Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(37): e202308715, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37486788

RESUMO

Cooperative behavior and orthogonal responses of two classes of coordinatively integrated photochromic molecules towards distinct external stimuli were demonstrated on the first example of a photo-thermo-responsive hierarchical platform. Synergetic and orthogonal responses to temperature and excitation wavelength are achieved by confining the stimuli-responsive moieties within a metal-organic framework (MOF), leading to the preparation of a novel photo-thermo-responsive spiropyran-diarylethene based material. Synergistic behavior of two photoswitches enables the study of stimuli-responsive resonance energy transfer as well as control of the photoinduced charge transfer processes, milestones required to advance optoelectronics development. Spectroscopic studies in combination with theoretical modeling revealed a nonlinear effect on the material electronic structure arising from the coordinative integration of photoresponsive molecules with distinct photoisomerization mechanisms. Thus, the reported work covers multivariable facets of not only fundamental aspects of photoswitch cooperativity, but also provides a pathway to modulate photophysics and electronics of multidimensional functional materials exhibiting thermo-photochromism.

2.
Angew Chem Int Ed Engl ; 62(2): e202211776, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36346406

RESUMO

Confinement-imposed photophysics was probed for novel stimuli-responsive hydrazone-based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution-like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady-state and time-resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone-based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.

3.
J Am Chem Soc ; 144(51): 23249-23263, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36512744

RESUMO

Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.


Assuntos
Amigos , Estruturas Metalorgânicas , Humanos , Metais/química , Cátions , Catálise
4.
J Am Chem Soc ; 144(10): 4457-4468, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35138840

RESUMO

Tuning metal oxidation states in metal-organic framework (MOF) nodes by switching between two discrete linker photoisomers via an external stimulus was probed for the first time. On the examples of three novel photochromic copper-based frameworks, we demonstrated the capability of switching between +2 and +1 oxidation states, on demand. In addition to crystallographic methods used for material characterization, the role of the photochromic moieties for tuning the oxidation state was probed via conductivity measurements, cyclic voltammetry, and electron paramagnetic resonance, X-ray photoelectron, and diffuse reflectance spectroscopies. We confirmed the reversible photoswitching activity including photoisomerization rate determination of spiropyran- and diarylethene-containing linkers in extended frameworks, resulting in changes in metal oxidation states as a function of alternating excitation wavelengths. To elucidate the switching process between two states, the photoisomerization quantum yield of photochromic MOFs was determined for the first time. Overall, the introduced noninvasive concept of metal oxidation state modulation on the examples of stimuli-responsive MOFs foreshadows a new pathway for alternation of material properties toward targeted applications.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Metais , Oxirredução
5.
J Am Chem Soc ; 144(35): 16139-16149, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36027644

RESUMO

Comparison of defect-controlled leaching-kinetics modulation of metal-organic frameworks (MOFs) and porous functionalized silica-based materials was performed on the example of a radionuclide and radionuclide surrogate for the first time, revealing an unprecedented readsorption phenomenon. On a series of zirconium-based MOFs as model systems, we demonstrated the ability to capture and retain >99% of the transuranic 241Am radionuclide after 1 week of storage. We report the possibility of tailoring radionuclide release kinetics in MOFs through framework defects as a function of postsynthetically installed organic ligands including cation-chelating crown ether-based linkers. Based on comprehensive analysis using spectroscopy (EXAFS, UV-vis, FTIR, and NMR), X-ray crystallography (single crystal and powder), and theoretical calculations (nine kinetics models and structure simulations), we demonstrated the synergy of radionuclide integration methods, topological restrictions, postsynthetic scaffold modification, and defect engineering. This combination is inaccessible in any other material and highlights the advantages of using well-defined frameworks for gaining fundamental knowledge necessary for the advancement of actinide-based material development, providing a pathway for addressing upcoming challenges in the nuclear waste administration sector.


Assuntos
Estruturas Metalorgânicas , Cinética , Estruturas Metalorgânicas/química , Porosidade , Radioisótopos , Zircônio/química
6.
Nat Commun ; 14(1): 7556, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985777

RESUMO

The forthcoming generation of materials, including artificial muscles, recyclable and healable systems, photochromic heterogeneous catalysts, or tailorable supercapacitors, relies on the fundamental concept of rapid switching between two or more discrete forms in the solid state. Herein, we report a breakthrough in the "speed limit" of photochromic molecules on the example of sterically-demanding spiropyran derivatives through their integration within solvent-free confined space, allowing for engineering of the photoresponsive moiety environment and tailoring their photoisomerization rates. The presented conceptual approach realized through construction of the spiropyran environment results in ~1000 times switching enhancement even in the solid state compared to its behavior in solution, setting a record in the field of photochromic compounds. Moreover, integration of two distinct photochromic moieties in the same framework provided access to a dynamic range of rates as well as complementary switching in the material's optical profile, uncovering a previously inaccessible pathway for interstate rapid photoisomerization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA