Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Bioorg Med Chem Lett ; 94: 129427, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541631

RESUMO

G protein-coupled receptor 3 (GPR3) is an orphan receptor potentially involved in many important physiological processes such as drug abuse, neuropathic pain, and anxiety and depression related disorders. Pharmacological studies of GPR3 have been limited due to the restricted number of known agonists and inverse agonists for this constitutively active receptor. In this medicinal chemistry study, we report the discovery of GPR3 agonists based off the diphenyleneiodonium (DPI) scaffold. The most potent full agonist was the 3-trifluoromethoxy analog (32) with an EC50 of 260 nM and 90% efficacy compared to DPI. Investigation of a homology model of GPR3 from multiple sequence alignment resulted in the finding of a binding site rich in potential π-π and π-cation interactions stabilizing DPI-scaffold agonists. MMGBSA free energy analysis showed a good correlation with trends in observed EC50s. DPI analogs retained the same high receptor selectivity for GPR3 over GPR6 and GPR12 as observed with DPI. Collectively, the DPI analog series shows that order of magnitude improvements in potency with the scaffold were attainable; however, attempts to replace the iodonium ion to make the scaffold more druggable failed.


Assuntos
Agonismo Inverso de Drogas , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Oniocompostos , Sítios de Ligação
2.
Bioorg Med Chem ; 28(23): 115791, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059303

RESUMO

GlaxoSmithKline and Astex Pharmaceuticals recently disclosed the discovery of the potent H-PGDS inhibitor GSK2894631A 1a (IC50 = 9.9 nM) as part of a fragment-based drug discovery collaboration with Astex Pharmaceuticals. This molecule exhibited good murine pharmacokinetics, allowing it to be utilized to explore H-PGDS pharmacology in vivo. Yet, with prolonged dosing at higher concentrations, 1a induced CNS toxicity. Looking to attenuate brain penetration in this series, aza-quinolines, were prepared with the intent of increasing polar surface area. Nitrogen substitutions at the 6- and 8-positions of the quinoline were discovered to be tolerated by the enzyme. Subsequent structure activity studies in these aza-quinoline scaffolds led to the identification of 1,8-naphthyridine 1y (IC50 = 9.4 nM) as a potent peripherally restricted H-PGDS inhibitor. Compound 1y is efficacious in four in vivo inflammatory models and exhibits no CNS toxicity.


Assuntos
Compostos Aza/química , Inibidores Enzimáticos/química , Quinolinas/química , Animais , Sítios de Ligação , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Estabilidade de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/metabolismo , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Ratos , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 27(8): 1456-1478, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30858025

RESUMO

With the goal of discovering more selective anti-inflammatory drugs, than COX inhibitors, to attenuate prostaglandin signaling, a fragment-based screen of hematopoietic prostaglandin D synthase was performed. The 76 crystallographic hits were sorted into similar groups, with the 3-cyano-quinoline 1a (FP IC50 = 220,000 nM, LE = 0.43) being a potent member of the 6,6-fused heterocyclic cluster. Employing SAR insights gained from structural comparisons of other H-PGDS fragment binding mode clusters, the initial hit 1a was converted into the 70-fold more potent quinoline 1d (IC50 = 3,100 nM, LE = 0.49). A systematic substitution of the amine moiety of 1d, utilizing structural information and array chemistry, with modifications to improve inhibitor stability, resulted in the identification of the 300-fold more active H-PGDS inhibitor tool compound 1bv (IC50 = 9.9 nM, LE = 0.42). This selective inhibitor exhibited good murine pharmacokinetics, dose-dependently attenuated PGD2 production in a mast cell degranulation assay and should be suitable to further explore H-PGDS biology.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Lipocalinas/antagonistas & inibidores , Quinolinas/química , Quinolinas/farmacologia , Animais , Descoberta de Drogas , Inibidores Enzimáticos/farmacocinética , Humanos , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Quinolinas/farmacocinética
4.
Front Cell Neurosci ; 14: 234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848624

RESUMO

Hearing loss is the third most common chronic health condition in the United States and largely results from damage to sensory hair cells. Major causes of hair cell damage include aging, noise exposure, and medications such as aminoglycoside antibiotics. Due to their potent antibacterial properties and low cost, aminoglycosides are often used for the treatment of gram-negative bacterial infections, surpassing expensive antibiotics with fewer harmful side effects. However, their use is coupled with permanent hearing loss in over 20% of patients requiring these life-sustaining antibiotics. There are currently no FDA-approved drugs that prevent hearing loss from aminoglycosides. A previous study by our group identified the plant alkaloid berbamine as a strong protectant of zebrafish lateral line hair cells from aminoglycoside damage. This effect is likely due to a block of the mechanotransduction channel, thereby reducing aminoglycoside entry into hair cells. The present study builds on this previous work, investigating 16 synthetic berbamine analogs to determine the core structure underlying their protective mechanisms. We demonstrate that nearly all of these berbamine analogs robustly protect lateral line hair cells from ototoxic damage, with ED50 values nearing 20 nM for the most potent analogs. Of the 16 analogs tested, nine strongly protected hair cells from both neomycin and gentamicin damage, while one conferred strong protection only from gentamicin. These data are consistent with prior research demonstrating that different aminoglycosides activate somewhat distinct mechanisms of damage. Regardless of the mechanism, protection required the entire berbamine scaffold. Phenolic alkylation or acylation with lipophilic groups appeared to improve protection compared to berbamine, implying that these structures may be responsible for mitigating damage. While the majority of analogs confer protection by blocking aminoglycoside uptake, 18% of our analogs also confer protection via an uptake-independent mechanism; these analogs exhibited protection when delivered after aminoglycoside removal. Based on our studies, berbamine analogs represent a promising tool to further understand the pathology of aminoglycoside-induced hearing loss and can serve as lead compounds to develop otoprotective drugs.

5.
Bioorg Med Chem Lett ; 19(2): 373-7, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19081716

RESUMO

Initial evaluation of a series 4,6-bis-anilino-1H-pyrrolo[2,3-d]pyrimidines revealed a C(1') carboxamide was preferred for sub-micromolar in vitro potency against IGF-1R. Subsequent solution stability studies with 1 revealed a susceptibility toward acid-induced intramolecular cyclization with the C(1') carboxamide. Herein, we describe several successful approaches toward generating both potent and acid-stable inhibitors of IGF-1R within the 4,6-bis-anilino-1H-pyrrolo[2,3-d]pyrimidine template.


Assuntos
Ácidos/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Pirróis/química
8.
J Org Chem ; 73(23): 9511-4, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18998728

RESUMO

A synthetic route to bisanilino-1H-pyrrolo[2,3-d]pyrimidines has been discovered, wherein the C(6)-chloride reactivity is necessarily enhanced via reversible acid-catalyzed internal activation of the pyrimidine ring by a C(1')-carboxamide moiety. Subsequent selective nucleophilic displacements at C(6) and C(1') constitute a one-pot tandem protocol for the rapid assembly of bisanilino-1H-pyrrolo[2,3-d]pyrimidines.


Assuntos
Amidas/química , Química Orgânica/métodos , Pirimidinas/química , Pirróis/química , Carbono/química , Catálise , Cloretos/química , Desenho de Fármacos , Modelos Químicos
9.
ACS Med Chem Lett ; 7(1): 83-8, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26819671

RESUMO

A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 µM), and high oral bioavailability in rats (83%).

10.
Int J Infect Dis ; 9(6): 335-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16085441

RESUMO

OBJECTIVES: Newer microbiologic methods to determine the species of coagulase-negative staphylococci (CoNS) have evolved which have shown that most endocarditis due to CoNS is caused by Staphylococcus epidermidis, and far fewer by Staphylococcus warneri and Staphylococcus lugdunensis. METHODS: The recent opportunity to successfully treat a patient with methicillin-resistant Staphylococcus capitis endocarditis secondary to an infected transvenous pacemaker led to a review of the literature relating to S. capitis endocarditis. RESULTS: Thirteen previously recorded patients were identified. Twelve (86%) patients were male. Ten had endocarditis associated with a native valve, two with prosthetic valves and one with a transvenous pacemaker. Mortality was low in all 14 cases (including this case report) with only two deaths; one in a patient with a native valve and the other with a prosthetic valve. Four of the isolates were methicillin resistant but sensitive to vancomycin, which was used in the treatment of eight patients. Those patients with prosthetic cardiac devices appear to do better when the devices are surgically removed. CONCLUSIONS: CoNS as a cause of endocarditis appears to be increasing and the current ability to determine the species of these organisms should elicit the epidemiology, clinical characteristics and biomolecular mechanisms involved in the induction of valvular disease.


Assuntos
Endocardite Bacteriana/microbiologia , Marca-Passo Artificial/efeitos adversos , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Staphylococcus/classificação
11.
J Med Chem ; 45(12): 2624-43, 2002 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12036372

RESUMO

A series of analogues of the protein kinase C (PKC) inhibitory natural product balanol which bear modified benzophenone subunits are described. The analogues were designed with the goal of uncovering structure-activity features that could be used in the development of PKC inhibitors with a reduced polar character compared to balanol itself. The results of these studies suggest that most of the benzophenone features found in the natural product are important for obtaining potent PKC inhibitory compounds. However, several modifications were found to lead to selective inhibitors of the related enzyme protein kinase A (PKA), and several specific modifications to the polar structural elements of the benzophenone were found to provide potent PKC inhibitors. In particular, it was found that replacement of the benzophenone carboxylate with bioisosteric equivalents could lead to potent analogues. Further, a tolerance for lipophilic substituents on the terminal benzophenone ring was uncovered. These results are discussed in light of recently available structural information for PKA.


Assuntos
Azepinas/síntese química , Benzofenonas/síntese química , Inibidores Enzimáticos/síntese química , Hidroxibenzoatos/síntese química , Proteína Quinase C/antagonistas & inibidores , Azepinas/química , Benzofenonas/química , Inibidores Enzimáticos/química , Humanos , Hidroxibenzoatos/química , Isoenzimas/antagonistas & inibidores , Relação Estrutura-Atividade
12.
Mol Cancer Ther ; 8(10): 2811-20, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19825801

RESUMO

The insulin-like growth factor-I receptor (IGF-IR) signaling pathway is activated in various tumors, and inhibition of IGF-IR kinase provides a therapeutic opportunity in these patients. GSK1838705A is a small-molecule kinase inhibitor that inhibits IGF-IR and the insulin receptor with IC(50)s of 2.0 and 1.6 nmol/L, respectively. GSK1838705A blocks the in vitro proliferation of cell lines derived from solid and hematologic malignancies, including multiple myeloma and Ewing's sarcoma, and retards the growth of human tumor xenografts in vivo. Despite the inhibitory effect of GSK1838705A on insulin receptor, minimal effects on glucose homeostasis were observed at efficacious doses. GSK1838705A also inhibits the anaplastic lymphoma kinase (ALK), which drives the aberrant growth of anaplastic large-cell lymphomas, some neuroblastomas, and a subset of non-small cell lung cancers. GSK1838705A inhibits ALK, with an IC(50) of 0.5 nmol/L, and causes complete regression of ALK-dependent tumors in vivo at well-tolerated doses. GSK1838705A is therefore a promising antitumor agent for therapeutic use in human cancers.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase do Linfoma Anaplásico , Animais , Glicemia/metabolismo , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Bioorg Med Chem Lett ; 12(6): 883-6, 2002 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-11958985

RESUMO

Tricyclic isoxazoles were identified from a screen as a novel class of selective multidrug resistance protein (MRP1) inhibitors. From a screen lead, SAR efforts resulted in the preparation of LY 402913 (9h), which inhibits MRP1 and reverses drug resistance to MRP1 substrates, such as doxorubicin, in HeLa-T5 cells (EC(50)=0.90 microM), while showing no inherent cytotoxicity. Additionally, LY 402913 inhibits ATP-dependent, MRP1-mediated LTC(4) uptake into membrane vesicles prepared from the MRP1-overexpressing HeLa-T5 cells (EC(50)=1.8 microM). LY 402913 also shows selectivity ( approximately 22-fold) against the related transporter, P-glycoprotein, in HL60/Adr and HL60/Vinc cells. Finally, when dosed in combination with the oncolytic MRP1 substrate vincristine, LY 402913 delays the growth of MRP1-overexpressing tumors in vivo.


Assuntos
Isoxazóis/síntese química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Transporte Biológico Ativo/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistência a Medicamentos , Sinergismo Farmacológico , Compostos Heterocíclicos com 3 Anéis/síntese química , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Isoxazóis/química , Isoxazóis/farmacologia , Leucotrieno C4/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Vincristina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA