Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Virol ; 97(7): e0085821, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338370

RESUMO

The 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome forms RNA structures that regulate virus replication and translation. The region contains an internal ribosomal entry site (IRES) and a 5'-terminal region. Binding of the liver-specific microRNA (miRNA) miR-122 to two binding sites in the 5'-terminal region regulates viral replication, translation, and genome stability and is essential for efficient virus replication, but its precise mechanism of action is still unresolved. A current hypothesis is that miR-122 binding stimulates viral translation by facilitating the viral 5' UTR to form the translationally active HCV IRES RNA structure. While miR-122 is essential for detectable replication of wild-type HCV genomes in cell culture, several viral variants with 5' UTR mutations exhibit low-level replication in the absence of miR-122. We show that HCV mutants capable of replicating independently of miR-122 display an enhanced translation phenotype that correlates with their ability to replicate independently of miR-122. Further, we provide evidence that translation regulation is the major role for miR-122 and show that miR-122-independent HCV replication can be rescued to miR-122-dependent levels by the combined impacts of 5' UTR mutations that stimulate translation and by stabilizing the viral genome by knockdown of host exonucleases and phosphatases that degrade the genome. Finally, we show that HCV mutants capable of replicating independently of miR-122 also replicate independently of other microRNAs generated by the canonical miRNA synthesis pathway. Thus, we provide a model suggesting that translation stimulation and genome stabilization are the primary roles for miR-122 in promoting HCV. IMPORTANCE The unusual and essential role of miR-122 in promoting HCV propagation is incompletely understood. To better understand its role, we have analyzed HCV mutants capable of replicating independently of miR-122. Our data show that the ability of viruses to replicate independently of miR-122 correlates with enhanced virus translation but that genome stabilization is required to restore efficient HCV replication. This suggests that viruses must gain both abilities to escape the need for miR-122 and impacts the possibility that HCV can evolve to replicate outside the liver.


Assuntos
Hepatite C , MicroRNAs , Humanos , Hepacivirus/fisiologia , Regiões 5' não Traduzidas , MicroRNAs/genética , MicroRNAs/metabolismo , Sítios Internos de Entrada Ribossomal , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/fisiologia , Biossíntese de Proteínas
2.
J Virol ; 96(4): e0190321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908444

RESUMO

A liver-specific microRNA, miR-122, anneals to the hepatitis C virus (HCV) genomic 5' terminus and is essential for virus replication in cell culture. However, bicistronic HCV replicons and full-length RNAs with specific mutations in the 5' untranslated region (UTR) can replicate, albeit to low levels, without miR-122. In this study, we have identified that HCV RNAs lacking the structural gene region or having encephalomyocarditis virus internal ribosomal entry site (EMCV IRES)-regulated translation had reduced requirements for miR-122. In addition, we found that a smaller proportion of cells supported miR-122-independent replication compared a population of cells supporting miR-122-dependent replication, while viral protein levels per positive cell were similar. Further, the proportion of cells supporting miR-122-independent replication increased with the amount of viral RNA delivered, suggesting that establishment of miR-122-independent replication in a cell is affected by the amount of viral RNA delivered. HCV RNAs replicating independently of miR-122 were not affected by supplementation with miR-122, suggesting that miR-122 is not essential for maintenance of an miR-122-independent HCV infection. However, miR-122 supplementation had a small positive impact on miR-122-dependent replication, suggesting a minor role in enhancing ongoing virus RNA accumulation. We suggest that miR-122 functions primarily to initiate an HCV infection but has a minor influence on its maintenance, and we present a model in which miR-122 is required for replication complex formation at the beginning of an infection and also supports new replication complex formation during ongoing infection and after infected cell division. IMPORTANCE The mechanism by which miR-122 promotes the HCV life cycle is not well understood, and a role in directly promoting genome amplification is still debated. In this study, we have shown that miR-122 increases the rate of viral RNA accumulation and promotes the establishment of an HCV infection in a greater number of cells than in the absence of miR-122. However, we also confirm a minor role in promoting ongoing virus replication and propose a role in the initiation of new replication complexes throughout a virus infection. This study has implications for the use of anti-miR-122 as a potential HCV therapy.


Assuntos
Hepacivirus/fisiologia , MicroRNAs/genética , Replicação Viral , Linhagem Celular , Vírus da Encefalomiocardite/genética , Genoma Viral/genética , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Humanos , Sítios Internos de Entrada Ribossomal/genética , Mutação , Estabilidade de RNA , RNA Viral/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/biossíntese , Compartimentos de Replicação Viral/metabolismo , Proteínas Estruturais Virais/genética
3.
Nucleic Acids Res ; 48(16): 9235-9249, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32810257

RESUMO

Hepatitis C virus (HCV) replication requires annealing of a liver specific small-RNA, miR-122 to 2 sites on 5' untranslated region (UTR). Annealing has been reported to (a) stabilize the genome, (b) stimulate translation and (c) promote the formation of translationally active Internal Ribosome Entry Site (IRES) RNA structure. In this report, we map the RNA element to which small RNA annealing promotes HCV to nucleotides 1-44 and identify the relative impact of small RNA annealing on virus translation promotion and genome stabilization. We mapped the optimal region on the HCV genome to which small RNA annealing promotes virus replication to nucleotides 19-37 and found the efficiency of viral RNA accumulation decreased as annealing moved away from this region. Then, by using a panel of small RNAs that promote replication with varying efficiencies we link the efficiency of lifecycle promotion with translation stimulation. By contrast small RNA annealing stabilized the viral genome even if they did not promote virus replication. Thus, we propose that miR-122 annealing promotes HCV replication by annealing to an RNA element that activates the HCV IRES and stimulates translation, and that miR-122 induced HCV genome stabilization is insufficient alone but enhances virus replication.


Assuntos
Instabilidade Genômica/genética , Hepatite C/genética , MicroRNAs/genética , Biossíntese de Proteínas , Regiões 5' não Traduzidas/genética , Proteínas Argonautas/genética , Genoma Viral/genética , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C/virologia , Humanos , Sítios Internos de Entrada Ribossomal/genética , Estabilidade de RNA/genética , Sequências Reguladoras de Ácido Nucleico/genética , Replicação Viral/genética
4.
Nucleic Acids Res ; 46(10): 5139-5158, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29672716

RESUMO

Hepatitis C virus (HCV) recruits two molecules of the liver-specific microRNA-122 (miR-122) to the 5' end of its genome. This interaction promotes viral RNA accumulation, but the precise mechanism(s) remain incompletely understood. Previous studies suggest that miR-122 is able to protect the HCV genome from 5' exonucleases (Xrn1/2), but this protection is not sufficient to account for the effect of miR-122 on HCV RNA accumulation. Thus, we investigated whether miR-122 was also able to protect the viral genome from innate sensors of RNA or cellular pyrophosphatases. We found that miR-122 does not play a protective role against recognition by PKR, RIG-I-like receptors, or IFITs 1 and 5. However, we found that knockdown of both the cellular pyrophosphatases, DOM3Z and DUSP11, was able to rescue viral RNA accumulation of subgenomic replicons in the absence of miR-122. Nevertheless, pyrophosphatase knockdown increased but did not restore viral RNA accumulation of full-length HCV RNA in miR-122 knockout cells, suggesting that miR-122 likely plays an additional role(s) in the HCV life cycle, beyond 5' end protection. Overall, our results support a model in which miR-122 stabilizes the HCV genome by shielding its 5' terminus from cellular pyrophosphatase activity and subsequent turnover by exonucleases (Xrn1/2).


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno/genética , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Fosfatases de Especificidade Dupla/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Genoma Viral , Hepacivirus/genética , Humanos , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/genética , Estabilidade de RNA , RNA Viral/metabolismo , Proteínas de Ligação a RNA , Replicação Viral/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
5.
Nucleic Acids Res ; 46(18): 9776-9792, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30053137

RESUMO

Annealing of the liver-specific microRNA, miR-122, to the Hepatitis C virus (HCV) 5' UTR is required for efficient virus replication. By using siRNAs to pressure escape mutations, 30 replication-competent HCV genomes having nucleotide changes in the conserved 5' untranslated region (UTR) were identified. In silico analysis predicted that miR-122 annealing induces canonical HCV genomic 5' UTR RNA folding, and mutant 5' UTR sequences that promoted miR-122-independent HCV replication favored the formation of the canonical RNA structure, even in the absence of miR-122. Additionally, some mutant viruses adapted to use the siRNA as a miR-122-mimic. We further demonstrate that small RNAs that anneal with perfect complementarity to the 5' UTR stabilize and promote HCV genome accumulation. Thus, HCV genome stabilization and life-cycle promotion does not require the specific annealing pattern demonstrated for miR-122 nor 5' end annealing or 3' overhanging nucleotides. Replication promotion by perfect-match siRNAs was observed in Ago2 knockout cells revealing that other Ago isoforms can support HCV replication. At last, we present a model for miR-122 promotion of the HCV life cycle in which miRNA annealing to the 5' UTR, in conjunction with any Ago isoform, modifies the 5' UTR structure to stabilize the viral genome and promote HCV RNA accumulation.


Assuntos
Regiões 5' não Traduzidas/genética , Hepacivirus/fisiologia , MicroRNAs/fisiologia , Mutação/fisiologia , Conformação de Ácido Nucleico , RNA Viral , Replicação Viral/fisiologia , Proteínas Argonautas/genética , Pareamento de Bases/genética , Sequência de Bases , Biologia Computacional , Técnicas de Silenciamento de Genes , Genoma Viral/genética , Hepacivirus/genética , Humanos , Estabilidade de RNA , RNA Viral/química , RNA Viral/genética , Células Tumorais Cultivadas
6.
Int J Mol Sci ; 21(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784807

RESUMO

Hepatitis C virus (HCV) replication requires annealing of a liver specific microRNA, miR-122 to 2 sites on 5' untranslated region (UTR). While, microRNAs downregulate gene expression by binding to the 3' untranslated region of the target mRNA, in this case, the microRNA anneals to the 5'UTR of the viral genomes and upregulates the viral lifecycle. In this review, we explore the current understandings of the mechanisms by which miR-122 promotes the HCV lifecycle, and its contributions to pathogenesis. Annealing of miR-122 has been reported to (a) stimulate virus translation by promoting the formation of translationally active internal ribosome entry site (IRES) RNA structure, (b) stabilize the genome, and (c) induce viral genomic RNA replication. MiR-122 modulates lipid metabolism and suppresses tumor formation, and sequestration by HCV may influence virus pathogenesis. We also discuss the possible use of miR-122 as a biomarker for chronic hepatitis and as a therapeutic target. Finally, we discuss roles for miR-122 and other microRNAs in promoting other viruses.


Assuntos
Hepacivirus/fisiologia , Fígado/metabolismo , Fígado/virologia , MicroRNAs/metabolismo , Replicação Viral/fisiologia , Animais , Hepacivirus/genética , Humanos , MicroRNAs/genética , Especificidade de Órgãos , Tropismo
7.
J Virol ; 89(12): 6294-311, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25855736

RESUMO

UNLABELLED: miR-122 is a liver-specific microRNA (miRNA) that binds to two sites (S1 and S2) on the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome and promotes the viral life cycle. It positively affects viral RNA stability, translation, and replication, but the mechanism is not well understood. To unravel the roles of miR-122 binding at each site alone or in combination, we employed miR-122 binding site mutant viral RNAs, Hep3B cells (which lack detectable miR-122), and complementation with wild-type miR-122, an miR-122 with the matching mutation, or both. We found that miR-122 binding at either site alone increased replication equally, while binding at both sites had a cooperative effect. Xrn1 depletion rescued miR-122-unbound full-length RNA replication to detectable levels but not to miR-122-bound levels, confirming that miR-122 protects HCV RNA from Xrn1, a cytoplasmic 5'-to-3' exoribonuclease, but also has additional functions. In cells depleted of Xrn1, replication levels of S1-bound HCV RNA were slightly higher than S2-bound RNA levels, suggesting that both sites contribute, but their contributions may be unequal when the need for protection from Xrn1 is reduced. miR-122 binding at S1 or S2 also increased translation equally, but the effect was abolished by Xrn1 knockdown, suggesting that the influence of miR-122 on HCV translation reflects protection from Xrn1 degradation. Our results show that occupation of each miR-122 binding site contributes equally and cooperatively to HCV replication but suggest somewhat unequal contributions of each site to Xrn1 protection and additional functions of miR-122. IMPORTANCE: The functions of miR-122 in the promotion of the HCV life cycle are not fully understood. Here, we show that binding of miR-122 to each of the two binding sites in the HCV 5' UTR contributes equally to HCV replication and that binding to both sites can function cooperatively. This suggests that active Ago2-miR-122 complexes assemble at each site and can cooperatively promote the association and/or function of adjacent complexes, similar to what has been proposed for translation suppression by adjacent miRNA binding sites. We also confirm a role for miR-122 in protection from Xrn1 and provide evidence that miR-122 has additional functions in the HCV life cycle unrelated to Xrn1. Finally, we show that each binding site may contribute unequally to Xrn1 protection and other miR-122 functions.


Assuntos
Regiões 5' não Traduzidas , Exorribonucleases/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Viral/metabolismo , Replicação Viral , Linhagem Celular , Hepatócitos/virologia , Humanos , Ligação Proteica , Biossíntese de Proteínas , Estabilidade de RNA
8.
J Virol ; 87(13): 7338-47, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616647

RESUMO

Hepatitis C virus (HCV) RNA forms an unusual interaction with human microRNA-122 (miR-122) that promotes viral RNA accumulation in cultured human liver cells and in the livers of infected chimpanzees. GB virus B (GBV-B) is a hepatotropic virus and close relative of HCV. Thus, GBV-B has been used as a surrogate system to study HCV amplification in cultured cells and in infected tamarins. It was discovered that the 5'-terminal sequences of GBV-B RNA, like HCV RNA, forms an Argonaute 2-mediated complex with two miR-122 molecules that are essential for accumulation of GBV-B subgenomic replicon RNA. However, sequences in miR-122 that anneal to each viral RNA genome were different, suggesting distinct overall structural features in HCV:miR-122 and GBV-B:miR-122 complexes. Surprisingly, a deletion that removed both miR-122 binding sites from the subgenomic GBV-B RNAs rendered viral RNA amplification independent from miR-122 and Argonaute 2. This finding suggests that structural features at the end of the viral genome dictate whether miR-122 is required to aid in maintaining viral RNA abundance.


Assuntos
Proteínas Argonautas/metabolismo , Vírus GB B/genética , Regulação Viral da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , RNA Viral/metabolismo , Northern Blotting , Linhagem Celular Tumoral , Primers do DNA/genética , Vírus GB B/metabolismo , Hepacivirus/genética , Hepacivirus/metabolismo , Humanos , Luciferases , Mutagênese , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Replicon/genética , Transfecção
9.
Methods Mol Biol ; 2813: 65-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38888770

RESUMO

Reverse genetic methods to manipulate viral genomes are key tools in modern virological experimentation. They allow for the generation of reporter virus genomes to simplify the assessment of virus growth and for the analysis of the impact of specific mutations in the genome on virus phenotypes. For SARS-CoV-2, reverse genetic systems are complicated by the large size of the viral genome and the instability of certain genomic sections in bacteria requiring the use of low-copy number bacterial artificial chromosome plasmids (bacmids). However, even with the use of bacmids, faithfully amplifying SARS-CoV-2 bacmids is often challenging. In this chapter, we describe a detailed protocol to grow SARS-CoV-2 bacmids and highlight the challenges and optimal techniques to produce large quantities of SARS-CoV-2 bacmids that are free of deletions and mutations. Overall, this chapter has recapitulated an overview of the maxi-preparation procedure for large unstable bacmids like SARS-CoV-2 to facilitate downstream applications.


Assuntos
COVID-19 , Cromossomos Artificiais Bacterianos , DNA Complementar , Genoma Viral , Plasmídeos , SARS-CoV-2 , SARS-CoV-2/genética , Plasmídeos/genética , Cromossomos Artificiais Bacterianos/genética , Humanos , COVID-19/virologia , DNA Complementar/genética , Genética Reversa/métodos , RNA Viral/genética
10.
Pharmacol Res ; 75: 48-59, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23541631

RESUMO

Hepatitis C Virus (HCV) infection-induced liver disease is a growing problem worldwide, and is the primary cause of liver failure requiring liver transplantation in North America. Improved therapeutic strategies are required to control and possibly eradicate HCV infections, and to modulate HCV-induced liver disease. Cellular microRNAs anneal to and regulate mRNA translation and stability and form a regulatory network that modulates virtually every cellular process. Thus, miRNAs are promising cellular targets for therapeutic intervention for an array of diseases including cancer, metabolic diseases, and virus infections. In this review we outline the features of miRNA regulation and how miRNAs may be targeted in strategies to modulate HCV replication and pathogenesis. In particular, we highlight miR-122, a miRNA that directly modulates the HCV life cycle using an unusual mechanism. This miRNA is very important since miR-122 antagonists dramatically reduced HCV titres in HCV-infected chimpanzees and humans and currently represents the most likely candidate to be the first miRNA-based therapy licensed for use. However, we also discuss other miRNAs that directly or indirectly alter HCV replication efficiency, liver cirrhosis, fibrosis and the development of hepatocellular carcinoma (HCC). We also discuss a few miRNAs that might be targets to treat HCV in cases of HCV/HIV co-infection. Finally, we review methods to deliver miRNA antagonists and mimics to the liver. In the future, it may be possible to design and deliver specific combinations of miRNA antagonists and mimics to cure HCV infection or to limit liver pathogenesis.


Assuntos
Marcação de Genes/métodos , Hepacivirus/fisiologia , Hepatite C/terapia , Interações Hospedeiro-Patógeno/genética , Fígado/patologia , MicroRNAs/genética , Regulação da Expressão Gênica , Hepacivirus/crescimento & desenvolvimento , Hepatite C/genética , Hepatite C/patologia , Hepatite C/virologia , Humanos , Fígado/metabolismo , Fígado/virologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , RNA Mensageiro/genética
11.
Viruses ; 15(6)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37376581

RESUMO

The global COVID-19 pandemic continues with continued cases worldwide and the emergence of new SARS-CoV-2 variants. In our study, we have developed novel tools with applications for screening antivirals, identifying virus-host dependencies, and characterizing viral variants. Using reverse genetics, we rescued SARS-CoV-2 Wuhan1 (D614G variant) wild type (WTFL) and reporter virus (NLucFL) using molecular BAC clones. The replication kinetics, plaque morphology, and titers were comparable between viruses rescued from molecular clones and a clinical isolate (VIDO-01 strain). Furthermore, the reporter SARS-CoV-2 NLucFL virus exhibited robust luciferase values over the time course of infection and was used to develop a rapid antiviral assay using remdesivir as proof-of-principle. In addition, as a tool to study lung-relevant virus-host interactions, we established novel human lung cell lines that support SARS-CoV-2 infection with high virus-induced cytopathology. Six lung cell lines (NCI-H23, A549, NCI-H1703, NCI-H520, NCI-H226, and HCC827) and HEK293T cells were transduced to stably express ACE2 and tested for their ability to support virus infection. A549ACE2 B1 and HEK293TACE2 A2 cell lines exhibited more than 70% virus-induced cell death, and a novel lung cell line, NCI-H23ACE2 A3, showed about ~99% cell death post-infection. These cell lines are ideal for assays relying on live-dead selection, such as CRISPR knockout and activation screens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , Citologia , Pandemias , Genética Reversa , Células HEK293 , Pulmão , Antivirais/farmacologia
12.
ACS Infect Dis ; 9(4): 749-761, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37011043

RESUMO

The recent emergence of SARS-CoV-2 in the human population has caused a global pandemic. The virus encodes two proteases, Mpro and PLpro, that are thought to play key roles in the suppression of host protein synthesis and immune response evasion during infection. To identify the specific host cell substrates of these proteases, active recombinant SARS-CoV-2 Mpro and PLpro were added to A549 and Jurkat human cell lysates, and subtiligase-mediated N-terminomics was used to capture and enrich protease substrate fragments. The precise location of each cleavage site was identified using mass spectrometry. Here, we report the identification of over 200 human host proteins that are potential substrates for SARS-CoV-2 Mpro and PLpro and provide a global mapping of proteolysis for these two viral proteases in vitro. Modulating proteolysis of these substrates will increase our understanding of SARS-CoV-2 pathobiology and COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Peptídeo Sintases , Peptídeo Hidrolases/metabolismo
13.
J Virol ; 85(5): 2342-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21177824

RESUMO

MicroRNA 122 (miR-122) increases the accumulation and translation of hepatitis C virus (HCV) RNA in infected cells through direct interactions with homologous sequences in the 5' untranslated region (UTR) of the HCV genome. Argonaute 2 (Ago2) is a component of the RNA-induced silencing complex (RISC) and mediates small interfering RNA (siRNA)-directed mRNA cleavage and microRNA translational suppression. We investigated the function of Ago2 in HCV replication to determine whether it plays a role in enhancing the synthesis and translation of HCV RNA that is associated with miR-122. siRNA-mediated depletion of Ago2 in human hepatoma cells reduced HCV RNA accumulation in transient HCV replication assays. The treatment did not adversely affect cell viability, as assessed by cell proliferation, capped translation, and interferon assays. These data are consistent with complementary roles for Ago2 and miR-122 in enhancing HCV RNA amplification. By using a transient HCV replication assay that is dependent on an exogenously provided mutant miR-122, we determined that Ago2 depletion still reduced luciferase expression and HCV RNA accumulation, independently of miR-122 biogenesis. miR-122 has previously been found to stimulate HCV translation. Similarly, Ago2 knockdown also reduced HCV translation, and its depletion reduced the ability of miR-122 to stimulate viral translation. These data suggest a direct role for Ago2 in miR-122-mediated translation. Finally, Ago2 was also necessary for efficient miR-122 enhancement of HCV RNA accumulation. These data support a model in which miR-122 functions within an Ago2-containing protein complex to augment both HCV RNA accumulation and translation.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , MicroRNAs/metabolismo , Biossíntese de Proteínas , RNA Viral/metabolismo , Proteínas Argonautas , Sequência de Bases , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/genética , Regulação Viral da Expressão Gênica , Hepacivirus/genética , Hepatite C/genética , Hepatite C/virologia , Humanos , MicroRNAs/genética , Dados de Sequência Molecular , RNA Viral/genética , Replicação Viral
15.
Pathogens ; 11(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36145436

RESUMO

Despite the advancement in antiviral therapy, Hepatitis C remains a global health challenge and one of the leading causes of hepatitis related deaths worldwide. Hepatitis C virus, the causative agent, is a positive strand RNA virus that requires a liver specific microRNA called miR-122 for its replication. Unconventional to the canonical role of miRNAs in translation suppression by binding to 3'Untranslated Region (UTR) of messenger RNAs, miR-122 binds to two sites on the 5'UTR of viral genome and promotes viral propagation. In this review, we describe the unique relationship between the liver specific microRNA and HCV, the current knowledge on the mechanisms by which the virus uses miR-122 to promote the virus life cycle, and how miR-122 impacts viral tropism and pathogenesis. We will also discuss the use of anti-miR-122 therapy and its impact on viral evolution of miR-122-independent replication. This review further provides insight into how viruses manipulate host factors at the initial stage of infection to establish a successful infection.

16.
J Virol ; 84(18): 9170-80, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20592082

RESUMO

Hepatitis C virus (HCV) infection causes significant morbidity, and efficient mouse models would greatly facilitate virus studies and the development of effective vaccines and new therapeutic agents. Entry factors, innate immunity, and host factors needed for viral replication represent the initial barriers that restrict HCV infection of mouse cells. Experiments in this paper consider early postentry steps of viral infection and investigate the roles of interferon regulatory factors (IRF-3 and IRF-9) and microRNA (miR-122) in promoting HCV replication in mouse embryo fibroblasts (MEFs) that contain viral subgenomic replicons. While wild-type murine fibroblasts are restricted for HCV RNA replication, deletion of IRF-3 alone can facilitate replicon activity in these cells. This effect is thought to be related to the inactivation of the type I interferon synthesis mediated by IRF-3. Additional deletion of IRF-9 to yield IRF-3(-/-) IRF-9(-/-) MEFs, which have blocked type I interferon signaling, did not increase HCV replication. Expression of liver-specific miR-122 in MEFs further stimulated the synthesis of HCV replicons in the rodent fibroblasts. The combined effects of miR-122 expression and deletion of IRF-3 produced a cooperative stimulation of HCV subgenome replication. miR-122 and IRF-3 are independent host factors that are capable of influencing HCV replication, and our findings could help to establish mouse models and other cell systems that support HCV growth and particle formation.


Assuntos
Fibroblastos/virologia , Hepacivirus/imunologia , Hepacivirus/fisiologia , Fator Regulador 3 de Interferon/deficiência , MicroRNAs/biossíntese , Replicação Viral , Animais , Fator Regulador 3 de Interferon/imunologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/deficiência , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/imunologia , Camundongos , Camundongos Knockout , Deleção de Sequência
17.
Pathogens ; 10(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832669

RESUMO

(1) Background: There is a strong need for prevention and treatment strategies for COVID-19 that are not impacted by SARS-CoV-2 mutations emerging in variants of concern. After virus infection, host ER resident sigma receptors form direct interactions with non-structural SARS-CoV-2 proteins present in the replication complex. (2) Methods: In this work, highly specific sigma receptor ligands were investigated for their ability to inhibit both SARS-CoV-2 genome replication and virus induced cellular toxicity. This study found antiviral activity associated with agonism of the sigma-1 receptor (e.g., SA4503), ligation of the sigma-2 receptor (e.g., CM398), and a combination of the two pathways (e.g., AZ66). (3) Results: Intermolecular contacts between these ligands and sigma receptors were identified by structural modeling. (4) Conclusions: Sigma receptor ligands and drugs with off-target sigma receptor binding characteristics were effective at inhibiting SARS-CoV-2 infection in primate and human cells, representing a potential therapeutic avenue for COVID-19 prevention and treatment.

18.
Can J Gastroenterol Hepatol ; 2016: 5743521, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446849

RESUMO

Hepatitis C virus (HCV) affects at least 268,000 Canadians and causes greater disease burden than any other infectious disease in the country. The Canadian Institutes of Health Research (CIHR) and the Public Health Agency of Canada (PHAC) have identified HCV-related liver disease as a priority. In 2015, the release of well-tolerated, short course treatments (~12 weeks) able to cure the majority of treated HCV patients revolutionized HCV therapy. However, treatment is extremely costly and puts a significant burden on the Canadian healthcare system. Thus, managing treatment costs and improving treatment engagement in those most in need will be a key challenge. Diagnosis and treatment uptake are currently poor in Canada due to financial, geographical, cultural, and social barriers. The United States, Australia, and Scotland all have National Action Plans to prevent, diagnose, and treat HCV in order to efficiently reduce the burden and costs associated with HCV-related liver disease. The theme of the 4th annual symposium held on Feb 27, 2015, "Strategies to Manage HCV Infection in Canada: Moving towards a National Action Plan," was aimed at identifying strategies to maximize the impact of highly effective therapies to reduce HCV disease burden and ultimately eliminate HCV in Canada.


Assuntos
Política de Saúde , Hepatite C , Antivirais/uso terapêutico , Canadá , Efeitos Psicossociais da Doença , Humanos
19.
Curr Opin Mol Ther ; 5(4): 389-96, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14513682

RESUMO

RNA interference, (RNAi) is a phenomenon by which the introduction of double stranded RNA (dsRNA) into cells induces targeted degradation of RNA molecules with homologous sequences. In the laboratory, RNAi has become a valuable tool for analysis of gene function through suppression of specific gene products. In addition, RNAi has shown great promise for use in therapeutic strategies designed to suppress the expression of pathogenic genes. In this review, viral expression and animal model systems that indicate the potential benefits of RNAi will be discussed. The major obstacle for the use of short interfering RNA in a laboratory or clinical setting is the need for efficient and sustained delivery of dsRNA to mammalian cells. Here, current methods that are being used to induce RNAi, both in cultured cells and in animal models, will be described with a focus on some of the most promising applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/biossíntese , Interferência de RNA/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Transgênicos , Modelos Animais , Interferência de RNA/efeitos dos fármacos
20.
Curr Opin Virol ; 7: 11-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24721497

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that function as part of RNA-induced silencing complexes that repress the expression of target genes. Over the past few years, miRNAs have been found to mediate complex regulation of a wide variety of mammalian viral infections, including Hepatitis C virus (HCV) infection. Here, we focus on a highly abundant, liver-specific miRNA, miR-122. In a unique and unusual interaction, miR-122 binds to two sites in the 5' untranslated region (UTR) of the HCV genome and promotes viral RNA accumulation. We will discuss what has been learned about this important interaction to date, provide insights into how miR-122 is able to modulate HCV RNA accumulation, and how miR-122 might be exploited for antiviral intervention.


Assuntos
Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/virologia , MicroRNAs/genética , Regiões 5' não Traduzidas , Animais , Hepacivirus/genética , Hepatite C/metabolismo , Humanos , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA