Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 24(12): 1231-1242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35075957

RESUMO

In this study, biochar was prepared from Sidr plant leaves and used for the treatment of ciprofloxacin (CIP)-contaminated water. CIP is important class of emerging water pollutants from pharmaceutical industries. The biochar showed 65% adsorption efficiency and 43.48 mg/g adsorption capacity of CIP. Adsorption efficiency as well as adsorption capacity were improved to 91% and 62.50 mg/g, respectively, by phosphoric acid (H3PO4) modified biochar. Removal of CIP by the prepared biochar was due to different surface functional groups of CIP and biochar as revealed from the study of different characterization analyses. The presence of PO43- group in modified biochar led to maximum binding of CIP. Also, the modified biochar showed higher reusability potential and less leaching of ions when compared to the raw biochar. Removal of CIP was affected by concentrations of CIP, the amount of biochar and different pH's; the maximum removal of CIP was achieved at pH 4. The Freundlich and pseudo-first-order models best fitted the removal of CIP by modified biochar. Advanced characterization techniques were applied to investigate surface and physiological characteristics of the biochar and modified biochar. The modification showed high impact on the performance and stability of biochar. The study showed significant impacts of modification on the potential of the biochar for treatment of CIP-contaminated water.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Adsorção , Biodegradação Ambiental , Carvão Vegetal/química , Ciprofloxacina/análise , Ciprofloxacina/química , Cinética , Água/análise , Poluentes Químicos da Água/química
2.
ACS Omega ; 9(10): 11500-11509, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497018

RESUMO

This study explores an innovative approach to tackle the critical issue of heavy metal ion contamination in aqueous solutions through the utilization of camel dung-derived biochar. In the context of global environmental concerns and the adverse impacts of heavy metal pollution on ecosystems and human health, the investigation focuses on copper(II) and chromium(III) ions, which are among the most pervasive pollutants originating from industrial activities. The research revealed that camel dung-derived biochar exhibits exceptional potential for the removal of copper(II) and chromium(III) ions, with removal efficiencies of more than 90% and adsorption capacities of 23.20 and 23.36 mg/g, respectively. The adsorption processes followed second-order kinetics, and the data fitted both the Langmuir and Freundlich adsorption models. The underlying mechanisms governing this adsorption phenomenon seem to be grounded in complexation reactions, cation exchange, and cation-π interactions, underscoring the multifaceted nature of the interactions between the biochar and heavy metal ions. This research not only advances our understanding of sustainable materials for water purification but also harnesses the underutilized potential of camel dung as a valuable resource for environmental remediation, offering a promising avenue for addressing global water pollution challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA