Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Plant Cell ; 34(11): 4600-4622, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35929080

RESUMO

Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned ß-galactoglucomannan (ß-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of ß-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that ß-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis ß-GGM synthesis mutants show no obvious growth defects, genetic crosses between ß-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of ß-GGM and XyG in PCWs.


Assuntos
Arabidopsis , Xilanos , Arabidopsis/genética , Parede Celular/química , Celulose
2.
New Phytol ; 240(6): 2353-2371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823344

RESUMO

Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit ß1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan ß-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and ß-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that ß-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.


Assuntos
Arabidopsis , Humanos , Arabidopsis/metabolismo , Café/metabolismo , Xilanos/metabolismo , Oligossacarídeos/metabolismo , Parede Celular/metabolismo , Açúcares/metabolismo
3.
Am J Gastroenterol ; 117(5): 802-805, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35296630

RESUMO

INTRODUCTION: Prior authorizations (PAs) are intended to control prescription drug expenditures. METHODS: One hundred fifty-six physician and advanced practice provider members of the American College of Gastroenterology completed a national survey to assess PA burden and impact. RESULTS: One-half of PA requests relate to prescription refills. Greater than 50% of the respondents choose inferior treatments at least weekly because of perceived PA burden for preferred agents. One-half of the respondents reported a patient who experienced serious adverse events due to PA-related care delays. DISCUSSION: PA is an administrative burden that exhausts practice resources and may have a negative impact on patient care.


Assuntos
Gastroenterologia , Medicamentos sob Prescrição , Gastos em Saúde , Humanos , Assistência ao Paciente , Autorização Prévia , Estados Unidos
4.
PLoS Pathog ; 15(4): e1007724, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30998773

RESUMO

Type 2 diabetes mellitus (DM) is a major risk factor for developing tuberculosis (TB). TB-DM comorbidity is expected to pose a serious future health problem due to the alarming rise in global DM incidence. At present, the causal underlying mechanisms linking DM and TB remain unclear. DM is associated with elevated levels of oxidized low-density lipoprotein (oxLDL), a pathologically modified lipoprotein which plays a key role during atherosclerosis development through the formation of lipid-loaded foamy macrophages, an event which also occurs during progression of the TB granuloma. We therefore hypothesized that oxLDL could be a common factor connecting DM to TB. To study this, we measured oxLDL levels in plasma samples of healthy controls, TB, DM and TB-DM patients, and subsequently investigated the effect of oxLDL treatment on human macrophage infection with Mycobacterium tuberculosis (Mtb). Plasma oxLDL levels were significantly elevated in DM patients and associated with high triglyceride levels in TB-DM. Strikingly, incubation with oxLDL strongly increased macrophage Mtb load compared to native or acetylated LDL (acLDL). Mechanistically, oxLDL -but not acLDL- treatment induced macrophage lysosomal cholesterol accumulation and increased protein levels of lysosomal and autophagy markers, while reducing Mtb colocalization with lysosomes. Importantly, combined treatment of acLDL and intracellular cholesterol transport inhibitor (U18666A) mimicked the oxLDL-induced lysosomal phenotype and impaired macrophage Mtb control, illustrating that the localization of lipid accumulation is critical. Collectively, these results demonstrate that oxLDL could be an important DM-associated TB-risk factor by causing lysosomal dysfunction and impaired control of Mtb infection in human macrophages.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Lipoproteínas LDL/metabolismo , Lisossomos/patologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/microbiologia , Autofagia , Estudos de Casos e Controles , Células Cultivadas , Colesterol/metabolismo , Estudos de Coortes , Humanos , Incidência , Lisossomos/metabolismo , Lisossomos/microbiologia , Macrófagos/metabolismo , Macrófagos/patologia , Tuberculose/epidemiologia , Tuberculose/metabolismo , Tuberculose/patologia
5.
BMC Infect Dis ; 15: 477, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26510990

RESUMO

BACKGROUND: Acute inflammatory reactions are a frequently occurring, tissue destructing phenomenon in infectious- as well as autoimmune diseases, providing clinical challenges for early diagnosis. In leprosy, an infectious disease initiated by Mycobacterium leprae (M. leprae), these reactions represent the major cause of permanent neuropathy. However, laboratory tests for early diagnosis of reactional episodes which would significantly contribute to prevention of tissue damage are not yet available. Although classical diagnostics involve a variety of tests, current research utilizes limited approaches for biomarker identification. In this study, we therefore studied leprosy as a model to identify biomarkers specific for inflammatory reactional episodes. METHODS: To identify host biomarker profiles associated with early onset of type 1 leprosy reactions, prospective cohorts including leprosy patients with and without reactions were recruited in Bangladesh, Brazil, Ethiopia and Nepal. The presence of multiple cyto-/chemokines induced by M. leprae antigen stimulation of peripheral blood mononuclear cells as well as the levels of antibodies directed against M. leprae-specific antigens in sera, were measured longitudinally in patients. RESULTS: At all sites, longitudinal analyses showed that IFN-γ-, IP-10-, IL-17- and VEGF-production by M. leprae (antigen)-stimulated PBMC peaked at diagnosis of type 1 reactions, compared to when reactions were absent. In contrast, IL-10 production decreased during type 1 reaction while increasing after treatment. Thus, ratios of these pro-inflammatory cytokines versus IL-10 provide useful tools for early diagnosing type 1 reactions and evaluating treatment. Of further importance for rapid diagnosis, circulating IP-10 in sera were significantly increased during type 1 reactions. On the other hand, humoral immunity, characterized by M. leprae-specific antibody detection, did not identify onset of type 1 reactions, but allowed treatment monitoring instead. CONCLUSIONS: This study identifies immune-profiles as promising host biomarkers for detecting intra-individual changes during acute inflammation in leprosy, also providing an approach for other chronic (infectious) diseases to help early diagnose these episodes and contribute to timely treatment and prevention of tissue damage.


Assuntos
Biomarcadores/análise , Citocinas/imunologia , Hanseníase/imunologia , Mycobacterium leprae/patogenicidade , Bangladesh , Brasil , Citocinas/sangue , Etiópia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunidade Humoral/imunologia , Interleucina-10/sangue , Interleucina-17/sangue , Hanseníase/diagnóstico , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/imunologia , Nepal , Estudos Prospectivos
6.
J Clin Immunol ; 34(2): 245-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24370984

RESUMO

PURPOSE: Leprosy, a chronic disease initiated by Mycobacterium leprae, is often complicated by acute inflammatory reactions. Although such episodes occur in at least 50% of all leprosy patients and may cause irreversible nerve damage, no laboratory tests are available for early diagnosis or prediction of reactions. Since immune- and genetic host factors are critical in leprosy reactions, we hypothesize that identification of host-derived biomarkers correlated to leprosy reactions can provide the basis for new tests to facilitate timely diagnosis and treatment thereby helping to prevent tissue damage. METHODS: The longitudinal host response of a leprosy patient, who was affected by a type 1 reaction (T1R) after MDT-treatment, was studied in unprecedented detail, measuring cellular and humoral immunity and gene expression profiles to identify biomarkers specific for T1R. RESULTS: Cytokine analysis in response to M. leprae revealed increased production of IFN-γ, IP-10, CXCL9, IL-17A and VEGF at diagnosis of T1R compared to before T1R, whereas a simultaneous decrease in IL-10 and G-CSF was observed at T1R. Cytokines shifts coincided with a reduction in known regulatory CD39(+)CCL4(+) and CD25(high) T-cell subsets. Moreover, RNA expression profiles revealed that IFN-induced genes, (V)EGF, and genes associated with cytotoxic T-cell responses (GNLY, GZMA/B, PRF1) were upregulated during T1R, whereas expression of T-cell regulation-associated genes were decreased. CONCLUSIONS: These data show that increased inflammation, vasculoneogenesis and cytotoxicity, perturbed T-cell regulation as well as IFN-induced genes play an important role in T1R and provide potential T1R-specific host biomarkers.


Assuntos
Hanseníase/genética , Hanseníase/imunologia , Transcriptoma , Adolescente , Antígenos de Bactérias/imunologia , Biomarcadores , Biópsia , Citocinas/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade Celular/genética , Imunidade Humoral/genética , Imunofenotipagem , Hanseníase/diagnóstico , Masculino , Mycobacterium leprae/imunologia , RNA Mensageiro/genética , Pele/imunologia , Pele/metabolismo , Pele/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
7.
Mol Microbiol ; 86(2): 472-84, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22925462

RESUMO

Pathogenic mycobacteria require type VII secretion (T7S) systems to transport virulence factors across their complex cell envelope. These bacteria have up to five of these systems, termed ESX-1 to ESX-5. Here, we show that ESX-5 of Mycobacterium tuberculosis mediates the secretion of EsxN, PPE and PE_PGRS proteins, indicating that ESX-5 is a major secretion pathway in this important pathogen. Using the ESX-5 system of Mycobacterium marinum and Mycobacterium bovis BCG as a model, we have purified and analysed the T7S membrane complex under native conditions. blue native-PAGE and immunoprecipitation experiments showed that the ESX-5 membrane complex of both species has a size of ~ 1500 kDa and is composed of four conserved membrane proteins, i.e. EccB(5) , EccC(5) , EccD(5) and EccE(5) . Subsequent limited proteolysis suggests that EccC(5) and EccE(5) mostly reside on the periphery of the complex. We also observed that EccC(5) and EccD(5) expression is essential for the formation of a stable membrane complex. These are the first data on a T7S membrane complex and, given the high conservation of its components, our data can likely be generalized to most mycobacterial T7S systems.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Membrana Celular/metabolismo , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/genética , Mycobacterium marinum/química , Mycobacterium marinum/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Estrutura Terciária de Proteína , Transporte Proteico
8.
J Immunol ; 187(3): 1393-402, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21705623

RESUMO

MHC class I-restricted CD8(+) T cells play an important role in protective immunity against mycobacteria. Previously, we showed that p113-121, derived from Mycobacterium leprae protein ML1419c, induced significant IFN-γ production by CD8(+) T cells in 90% of paucibacillary leprosy patients and in 80% of multibacillary patients' contacts, demonstrating induction of M. leprae-specific CD8(+) T cell immunity. In this work, we studied the in vivo role and functional profile of ML1419c p113-121-induced T cells in HLA-A*0201 transgenic mice. Immunization with 9mer or 30mer covering the p113-121 sequence combined with TLR9 agonist CpG induced HLA-A*0201-restricted, M. leprae-specific CD8(+) T cells as visualized by p113-121/HLA-A*0201 tetramers. Most CD8(+) T cells produced IFN-γ, but distinct IFN-γ(+)/TNF-α(+) populations were detected simultaneously with significant secretion of CXCL10/IFN-γ-induced protein 10, CXCL9/MIG, and VEGF. Strikingly, peptide immunization also induced high ML1419c-specific IgG levels, strongly suggesting that peptide-specific CD8(+) T cells provide help to B cells in vivo, as CD4(+) T cells were undetectable. An additional important characteristic of p113-121-specific CD8(+) T cells was their capacity for in vivo killing of p113-121-labeled, HLA-A*0201(+) splenocytes. The cytotoxic function of p113-121/HLA-A*0201-specific CD8(+) T cells extended into direct killing of splenocytes infected with live Mycobacterium smegmatis expressing ML1419c: both 9mer and 30mer induced CD8(+) T cells that reduced the number of ML1419c-expressing mycobacteria by 95%, whereas no reduction occurred using wild-type M. smegmatis. These data, combined with previous observations in Brazilian cohorts, show that ML1419c p113-121 induces potent CD8(+) T cells that provide protective immunity against M. leprae and B cell help for induction of specific IgG, suggesting its potential use in diagnostics and as a subunit (vaccine) for M. leprae infection.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Testes Imunológicos de Citotoxicidade , Epitopos de Linfócito T/imunologia , Antígenos HLA-A/imunologia , Mycobacterium leprae/imunologia , Fragmentos de Peptídeos/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/microbiologia , Sequência de Aminoácidos , Animais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/microbiologia , Subpopulações de Linfócitos B/patologia , Proteínas de Bactérias/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Células Cultivadas , Testes Imunológicos de Citotoxicidade/métodos , Epitopos de Linfócito T/administração & dosagem , Antígenos HLA-A/biossíntese , Antígenos HLA-A/genética , Antígeno HLA-A2 , Humanos , Hanseníase/imunologia , Hanseníase/microbiologia , Hanseníase/prevenção & controle , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mycobacterium leprae/patogenicidade , Fragmentos de Peptídeos/administração & dosagem , Linfócitos T Citotóxicos/patologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/microbiologia , Linfócitos T Auxiliares-Indutores/patologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
9.
J Immunol ; 187(9): 4744-53, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21957139

RESUMO

During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1ß activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread.


Assuntos
Proteínas de Homeodomínio/metabolismo , Inflamassomos/imunologia , Inflamassomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium marinum/imunologia , Mycobacterium tuberculosis/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Morte Celular/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Camundongos , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/patogenicidade
10.
Curr Opin Struct Biol ; 79: 102564, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870276

RESUMO

Polysaccharides are essential biopolymers produced in all kingdoms of life. On the cell surface, they represent versatile architectural components, forming protective capsules and coats, cell walls, or adhesives. Extracellular polysaccharide (EPS) biosynthesis mechanisms differ based on the cellular localization of polymer assembly. Some polysaccharides are first synthesized in the cytosol and then extruded by ATP powered transporters [1]. In other cases, the polymers are assembled outside the cell [2], synthesized and secreted in a single step [3], or deposited on the cell surface via vesicular trafficking [4]. This review focuses on recent insights into the biosynthesis, secretion, and assembly of EPS in microbes, plants and vertebrates. We focus on comparing the sites of biosynthesis, secretion mechanisms, and higher-order EPS assemblies.


Assuntos
Metabolismo dos Carboidratos , Polissacarídeos , Animais , Polissacarídeos/metabolismo , Membrana Celular/metabolismo , Transporte Biológico , Parede Celular/metabolismo
11.
PLoS One ; 18(12): e0289581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127933

RESUMO

The structures of cell wall mannan hemicelluloses have changed during plant evolution. Recently, a new structure called ß-galactoglucomannan (ß-GGM) was discovered in eudicot plants. This galactoglucomannan has ß-(1,2)-Gal-α-(1,6)-Gal disaccharide branches on some mannosyl residues of the strictly alternating Glc-Man backbone. Studies in Arabidopsis revealed ß-GGM is related in structure, biosynthesis and function to xyloglucan. However, when and how plants acquired ß-GGM remains elusive. Here, we studied mannan structures in many sister groups of eudicots. All glucomannan structures were distinct from ß-GGM. In addition, we searched for candidate mannan ß-galactosyltransferases (MBGT) in non-eudicot angiosperms. Candidate AtMBGT1 orthologues from rice (OsGT47A-VII) and Amborella (AtrGT47A-VII) did not show MBGT activity in vivo. However, the AtMBGT1 orthologue from rice showed MUR3-like xyloglucan galactosyltransferase activity in complementation analysis using Arabidopsis. Further, reverse genetic analysis revealed that the enzyme (OsGT47A-VII) contributes to proper root growth in rice. Together, gene duplication and diversification of GT47A-VII in eudicot evolution may have been involved in the acquisition of mannan ß-galactosyltransferase activity. Our results indicate that ß-GGM is likely to be a eudicot-specific mannan.


Assuntos
Arabidopsis , Magnoliopsida , Humanos , Mananas/química , Arabidopsis/genética , Galactosiltransferases/genética , Plantas , Filogenia
12.
Inquiry ; 59: 469580221141809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36541229

RESUMO

The CMS Innovation Center was created in section 3021 of the Affordable Care Act (ACA) with the promise to test payment and delivery models expected to reduce costs while improving or maintaining quality of care for Medicare, Medicaid, and Children's Health Insurance Program (CHIP) beneficiaries. Doug Badger's analysis of the Center for Medicare and Medicaid Innovation (CMMI), published in Inquiry, described how the CMMI has failed to accomplish its goals and makes a case for reforms. As a practicing clinician in private practice who has followed the implementation of the components of the Affordable Care Act, including the CMMI, his conclusions are not surprising. An examination of the clinically unworkable and recently delayed Radiation Oncology Alternative Payment Model demonstrates serious flaws in current CMMI methods. Government agencies have difficulty directing innovation. Clinicians know that real innovation will arise in unpredictable ways from the ingenious communities, providers, and organizations that deliver the care. Innovation will occur when an atmosphere of transparency forces providers to respond to the demands of patients. The CMMI would do well to redesign its processes. If "value" is the goal of CMS, then America deserves a better "value" from its healthcare agencies.


Assuntos
Medicare , Patient Protection and Affordable Care Act , Idoso , Criança , Humanos , Estados Unidos , Medicaid , Atenção à Saúde , Instalações de Saúde
13.
Front Plant Sci ; 13: 1076298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714768

RESUMO

Xylan is a hemicellulose present in the cell walls of all land plants. Glycosyltransferases of the GT43 (IRX9/IRX9L and IRX14/IRX14L) and GT47 (IRX10/IRX10L) families are involved in the biosynthesis of its ß-1,4-linked xylose backbone, which can be further modified by acetylation and sugar side chains. However, it remains unclear how the different enzymes work together to synthesize the xylan backbone. A xylan synthesis complex (XSC) has been described in the monocots wheat and asparagus, and co-expression of asparagus AoIRX9, AoIRX10 and AoIRX14A is required to form a catalytically active complex for secondary cell wall xylan biosynthesis. Here, we argue that an equivalent XSC exists for the synthesis of the primary cell wall of the eudicot Arabidopsis thaliana, consisting of IRX9L, IRX10L and IRX14. This would suggest the existence of distinct XSCs for primary and secondary cell wall xylan synthesis, reminiscent of the distinct cellulose synthesis complexes (CSCs) of the primary and secondary cell wall. In contrast to the CSC, in which each CESA protein has catalytic activity, the XSC seems to contain proteins with non-catalytic function with each component bearing potentially unique but crucial roles. Moreover, the core XSC formed by a combination of IRX9/IRX9L, IRX10/IRX10L and IRX14/IRX14L might not be stable in its composition during transit from the endoplasmic reticulum to the Golgi apparatus. Instead, potential dynamic changes of the XSC might be a means of regulating xylan biosynthesis to facilitate coordinated deposition of tailored polysaccharides in the plant cell wall.

14.
Vaccines (Basel) ; 10(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35746439

RESUMO

Tuberculosis (TB) is one of the top 10 leading causes of death worldwide. The recombinant BCG strain expressing the genetically detoxified A subunit of the thermolabile toxin from Escherichia coli (LTAK63) adjuvant (rBCG-LTAK63) has previously been shown to confer superior protection and immunogenicity compared to BCG in a murine TB infection model. To further investigate the immunological mechanisms induced by rBCG-LTAK63, we evaluated the immune responses induced by rBCG-LTAK63, BCG, and Mycobacterium tuberculosis (Mtb) H37Rv strains in experimental infections of primary human M1 and M2 macrophages at the transcriptomic and cytokine secretion levels. The rBCG-LTAK63-infected M1 macrophages more profoundly upregulated interferon-inducible genes such as IFIT3, OAS3, and antimicrobial gene CXCL9 compared to BCG, and induced higher levels of inflammatory cytokines such as IL-12(p70), TNF-ß, and IL-15. The rBCG-LTAK63-infected M2 macrophages more extensively upregulated transcripts of inflammation-related genes, TAP1, GBP1, SLAMF7, TNIP1, and IL6, and induced higher levels of cytokines related to inflammation and tissue repair, MCP-3 and EGF, as compared to BCG. Thus, our data revealed an important signature of immune responses induced in human macrophages by rBCG-LTAK63 associated with increased inflammation, activation, and tissue repair, which may be correlated with a protective immune response against TB.

19.
J Immunol ; 181(10): 7166-75, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18981138

RESUMO

The ESX-5 secretion system of pathogenic mycobacteria is responsible for the secretion of various PPE and PE-PGRS proteins. To better understand the role of ESX-5 effector proteins in virulence, we analyzed the interactions of Mycobacterium marinum ESX-5 mutant with human macrophages (Mphi). Both wild-type bacteria and the ESX-5 mutant were internalized and the ESX-5 mutation did not affect the escape of mycobacteria from phagolysosomes into the cytosol, as was shown by electron microscopy. However, the ESX-5 mutation strongly effected expression of surface Ags and cytokine secretion. Whereas wild-type M. marinum actively suppressed the induction of appreciable levels of IL-12p40, TNF-alpha, and IL-6, infection with the ESX-5 mutant resulted in strongly induced production of these proinflammatory cytokines. By contrast, infection with M. marinum wild-type strain resulted in a significant induction of IL-1beta production as compared with the ESX-5 mutant. These results show that ESX-5 plays an essential role in the modulation of immune cytokine secretion by human Mphi. Subsequently, we show that an intact ESX-5 secretion system actively suppresses TLR signaling-dependent innate immune cytokine secretion. Together, our results show that ESX-5 substrates, directly or indirectly, strongly modulate the human Mphi response at various critical steps.


Assuntos
Proteínas de Bactérias/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium marinum/patogenicidade , Fatores de Virulência/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/imunologia , Células Cultivadas , Citocinas/biossíntese , Humanos , Immunoblotting , Fatores de Virulência/metabolismo
20.
EBioMedicine ; 47: 301-308, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31422044

RESUMO

BACKGROUND: Transmission of Mycobacterium leprae, the pathogen causing leprosy, is still persistent. To facilitate timely (prophylactic) treatment and reduce transmission it is vital to both early diagnose leprosy, and identify infected individuals lacking clinical symptoms. However, leprosy-specific biomarkers are limited, particularly for paucibacillary disease. Therefore, our objective was to identify new biomarkers for leprosy and assess their applicability in point-of-care (POC) tests. METHODS: Using multiplex-bead-arrays, 60 host-proteins were measured in a cross-sectional approach in 24-h whole blood assays (WBAs) collected in Bangladesh (79 patients; 54 contacts; 51 endemic controls (EC)). Next, 17 promising biomarkers were validated in WBAs of a separate cohort (55 patients; 27 EC). Finally, in a third cohort (36 patients; 20 EC), five candidate markers detectable in plasma were assessed for application in POC tests. FINDINGS: This study identified three new biomarkers for leprosy (ApoA1, IL-1Ra, S100A12), and confirmed five previously described biomarkers (CCL4, CRP, IL-10, IP-10, αPGL-I IgM). Overnight stimulation in WBAs provided increased specificity for leprosy and was required for IL-10, IL-1Ra and CCL4. The remaining five biomarkers were directly detectable in plasma, hence suitable for rapid POC tests. Indeed, lateral flow assays (LFAs) utilizing this five-marker profile detected both multi- and paucibacillary leprosy patients with variable immune responses. INTERPRETATION: Application of novel host-biomarker profiles to rapid, quantitative LFAs improves leprosy diagnosis and allows POC testing in low-resource settings. This platform can thus aid diagnosis and classification of leprosy and also provides a tool to detect M.leprae infection in large-scale contact screening in the field.


Assuntos
Biomarcadores , Interações Hospedeiro-Patógeno , Hanseníase/sangue , Hanseníase/diagnóstico , Testes Imediatos , Adolescente , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Lactente , Recém-Nascido , Hanseníase/microbiologia , Hanseníase/transmissão , Masculino , Testes Imediatos/normas , Curva ROC , Sensibilidade e Especificidade , Fluxo de Trabalho , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA