Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Sci Food Agric ; 102(5): 2135-2143, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34601730

RESUMO

BACKGROUND: Duckweed has been considered as an alternative future food material as a result of its high nutritional values, although it also has a high moisture content resulting in a short shelf life. Moisture sorption isotherms are used to design dehydration and storage conditions to prolong the shelf life food products. To date, information regarding the sorption isotherm of duckweed has not been reported. Scanning electron microscopy (SEM) is frequently used to study food microstructure. However, this technique has to be performed under high-vacuum conditions and takes a long time. In the present study, two-photon imaging microscopy was selected to investigate the microstructure of dried duckweed instead of SEM. RESULTS: Among five sorption isotherm models, the Peleg model gave the highest goodness of fit. The monolayer moisture content (M0 ) of duckweed was in the range 7.43-7.92% dry basis (d.b.) and 8.87-8.86% d.b. for the GAB and BET multilayer kinetic models, respectively. The moisture changing behavior at each relative humidity step could be described by two exponential and reaction order kinetics. A clear cell structure (hexagonal shape) and stomata, as well as structural images (both 2D and 3D), were obtained using the two-photon microscopy technique. CONCLUSION: The Peleg model best described the moisture sorption behaviors of dried duckweed and the shape of sorption isotherms were classified as type III isotherm. The M0 of dried duckweed ranged from 7.43 to 8.86% d.b. Two-photon microscopy was a potent tool for investigating the microstructure and composition of dried duckweed. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes , Araceae , Cinética , Vácuo , Água/química
2.
Plant Cell Environ ; 44(8): 2636-2655, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33908641

RESUMO

The degradation of misfolded proteins is mainly mediated by the ubiquitin-proteasome system (UPS). UPS can be assisted by the protein Cdc48 but the relationship between UPS and Cdc48 in plants has been poorly investigated. Here, we analysed the regulation of UPS by Cdc48 in tobacco thanks to two independent cell lines overexpressing Cdc48 constitutively and plant leaves overexpressing Cdc48 transiently. In the cell lines, the accumulation of ubiquitinated proteins was affected both quantitatively and qualitatively and the number of proteasomal subunits was modified, while proteolytic activities were unchanged. Similarly, the over-expression of Cdc48 in planta impacted the accumulation of ubiquitinated proteins. A similar process occurred in leaves overexpressing transiently Rpn3, a proteasome subunit. Cdc48 being involved in plant immunity, its regulation of UPS was also investigated in response to cryptogein, an elicitor of immune responses. In the cell lines stably overexpressing Cdc48 and in leaves transiently overexpressing Cdc48 and/or Rpn3, cryptogein triggered a premature cell death while no increase of the proteasomal activity occurred. Overall, this study highlights a role for Cdc48 in ubiquitin homeostasis and confirms its involvement, as well as that of Rpn3, in the processes underlying the hypersensitive response.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina/metabolismo , Proteínas Fúngicas/farmacologia , Imunidade Vegetal , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Proteínas Ubiquitinadas/metabolismo , Proteína com Valosina/genética
3.
J Exp Bot ; 70(10): 2665-2681, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30821322

RESUMO

There is increasing evidence that the chaperone-like protein CDC48 (cell division cycle 48) plays a role in plant immunity. Cytosolic ascorbate peroxidase (cAPX), which is a major regulator of the redox status of plant cells, has previously been shown to interact with CDC48. In this study, we examined the regulation of cAPX by the ATPase NtCDC48 during the cryptogein-induced immune response in tobacco cells. Our results not only confirmed the interaction between the proteins but also showed that it occurs in the cytosol. cAPX accumulation was modified in cells overexpressing NtCDC48, a process that was shown to involve post-translational modification of cAPX. In addition, cryptogein-induced increases in cAPX activity were suppressed in cells overexpressing NtCDC48 and the abundance of the cAPX dimer was below the level of detection. Furthermore, the levels of both reduced (GSH) and oxidized glutathione (GSSG) and the GSH/GSSG ratio decreased more rapidly in response to the elicitor in these cells than in controls. A decrease in cAPX activity was also observed in response to heat shock in the cells overexpressing NtCDC48, indicating that the regulation of cAPX by NtCDC48 is not specific to the immune response.


Assuntos
Ascorbato Peroxidases/genética , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Proteína com Valosina/genética , Ascorbato Peroxidases/metabolismo , Citosol/metabolismo , Chaperonas Moleculares/metabolismo , Nicotiana/enzimologia , Proteína com Valosina/metabolismo
4.
Cryobiology ; 91: 69-76, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31678178

RESUMO

During slow freezing, spermatozoa undergo membrane alterations that compromise their ability of fertilizing. These alterations are cause either by cold shock or by the use of cryoprotectants known to be cytotoxic. However, little is known about the membrane changes that occurred during freezing. Here, we combined Generalized Polarization (GP), Time-resolved Fluorescence and laurdan fluorescence properties to investigate the changes in membrane fluidity and dynamics during slow freezing of bull sperm. We successfully demonstrated that laurdan may be distributed in three different local environments that correspond to different membrane lipid composition. These environments wont behave the same way when the cells will be subjected to either a chemical treatment (adding the cryoprotectants) or a physical treatment (freezing).


Assuntos
2-Naftilamina/análogos & derivados , Membrana Celular/fisiologia , Criopreservação/métodos , Lauratos/química , Fluidez de Membrana/fisiologia , Espermatozoides/fisiologia , 2-Naftilamina/química , Animais , Bovinos , Crioprotetores/farmacologia , Fluorescência , Congelamento , Masculino , Motilidade dos Espermatozoides/fisiologia
5.
Bioorg Med Chem ; 26(2): 413-420, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29254896

RESUMO

Fluorescent Probes aimed at absorbing in the blue/green region of the spectrum and emitting in the green/red have been synthesized (as the form of dyads-pentads), studied by spectrofluorimetry, and used for cellular imaging. The synthesis of phthalocyanine-pyrene 1 was achieved by cyclotetramerization of pyrenyldicyanobenzene, whereas phthalocyanine-BODIPY 2c was synthesized by Sonogashira coupling between tetraiodophthalocyanine and meso-alkynylBODIPY. The standard four-steps BODIPY synthesis was applied to the BODIPY-pyrene dyad 3 starting from pyrenecarbaldehyde and dimethylpyrrole. 1H, 13C, 19F, 11BNMR, ICP, MS, and UV/Vis spectroscopic analyses demonstrated that 2c is a mixture of BODIPY-Pc conjugates corresponding to an average ratio of 2.5 BODIPY per Pc unit, where its bis, tris, tetrakis components could not be separated. Fluorescence emission studies (µM concentration in THF) showed that the design of the probes allowed excitation of their antenna (pyrene, BODIPY) in the blue/green region of the spectrum, and subsequent transfer to the acceptor platform (BODIPY, phthalocyanine) followed by its emission in the green/red (with up to 140-350 nm overall Stokes shifts). The fluorescent probes were used for cellular imaging of B16F10 melanoma cells upon solubilization in 1% DMSO containing RPMI or upon encapsulation in liposomes (injection method). Probes were used at 1-10 µM concentrations, cells were fixed with methanol and imaged by biphoton and/or confocal microscopy, showing that probes could achieve the staining of cells membranes and not the nucleus.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Indóis/química , Melanoma/diagnóstico , Pirenos/química , Animais , Corantes Fluorescentes/síntese química , Isoindóis , Camundongos , Estrutura Molecular , Células Tumorais Cultivadas
6.
J Am Chem Soc ; 137(26): 8521-5, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26056849

RESUMO

Visualization of DNA and RNA quadruplex formation in human cells was demonstrated recently with different quadruplex-specific antibodies. Despite the significant interest in these immunodetection approaches, dynamic detection of quadruplex in live cells remains elusive. Here, we report on NaphthoTASQ (N-TASQ), a next-generation quadruplex ligand that acts as a multiphoton turn-on fluorescent probe. Single-step incubation of human and mouse cells with N-TASQ enables the direct detection of RNA-quadruplexes in untreated cells (no fixation, permeabilization or mounting steps), thus offering a unique, unbiased visualization of quadruplexes in live cells.


Assuntos
DNA/genética , Corantes Fluorescentes/química , Quadruplex G , Microscopia de Fluorescência/métodos , RNA/genética , Animais , Biomimética , Cátions , Linhagem Celular Tumoral , Quelantes/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Células MCF-7 , Melanoma Experimental , Camundongos , Fótons , RNA/química , Eletricidade Estática
7.
Environ Microbiol ; 17(8): 2982-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25845620

RESUMO

Environmental heat stress impacts on the physiology and viability of microbial cells with concomitant implications for microbial activity and diversity. Previously, it has been demonstrated that gradual heating of Saccharomyces cerevisiae induces a degree of thermal resistance, whereas a heat shock results in a high level of cell death. Here, we show that the impact of exogenous nutrients on acquisition of thermal resistance differs between strains. Using single-cell methods, we demonstrate the extent of heterogeneity of the heat-stress response within populations of yeast cells and the presence of subpopulations that are reversibly damaged by heat stress. Such cells represent potential for recovery of entire populations once stresses are removed. The results show that plasma membrane permeability and potential are key factors involved in cell survival, but thermal resistance is not related to homeoviscous adaptation of the plasma membrane. These results have implications for growth and regrowth of populations experiencing environmental heat stress and our understanding of impacts at the level of the single cell. Given the important role of microbes in biofuel production and bioremediation, a thorough understanding of the impact of stress responses of populations and individuals is highly desirable.


Assuntos
Adaptação Fisiológica , Membrana Celular/metabolismo , Resposta ao Choque Térmico/fisiologia , Saccharomyces cerevisiae/metabolismo , Sobrevivência Celular/fisiologia , Citometria de Fluxo , Temperatura Alta , Fluidez de Membrana/fisiologia , Potenciais da Membrana/fisiologia , Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Biochim Biophys Acta ; 1818(11): 2477-85, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22640696

RESUMO

Diffusion time distribution analysis has been employed to highlight the microfluidity fingerprint of plasma membrane of living cells. Diffusion time measurements were obtained through fluorescence correlation spectroscopy performed at the single cell level, over various eukaryotic cell lines (MCF7, LR73, KB3.1, MESSA and MDCKII). The nonsymmetric profile of the diffusion time distributions established experimentally, is discussed according to Monte Carlo simulations, which reproduce the diffusion of the fluorescent probe in heterogeneous membrane.


Assuntos
Permeabilidade da Membrana Celular , Espectrometria de Fluorescência/métodos , Animais , Linhagem Celular , Humanos , Método de Monte Carlo
9.
Anal Chem ; 85(9): 4735-44, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23521543

RESUMO

Saturation spectroscopy is a relevant method to investigate photophysical parameters of single fluorescent molecules. Nevertheless, the impact of a gradual increase, over a broad range, of the laser excitation on the intramolecular dynamics is not completely understood, particularly concerning their fluorescence emission (the so-called brightness). Thus, we propose a comprehensive theoretical and experimental study to interpret the unexpected evolution of the brightness with the laser power taking into account the cascade absorption of two and three photons. Furthermore, we highlight the key role played by the confocal observation volume in fluorescence saturation spectroscopy of single molecules in solution.

10.
Front Plant Sci ; 14: 1130782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818830

RESUMO

The establishment of defense reactions to protect plants against pathogens requires the recognition of invasion patterns (IPs), mainly detected by plasma membrane-bound pattern recognition receptors (PRRs). Some IPs, also termed elicitors, are used in several biocontrol products that are gradually being developed to reduce the use of chemicals in agriculture. Chitin, the major component of fungal cell walls, as well as its deacetylated derivative, chitosan, are two elicitors known to activate plant defense responses. However, recognition of chitooligosaccharides (COS) in Vitis vinifera is still poorly understood, hampering the improvement and generalization of protection tools for this important crop. In contrast, COS perception in the model plant Arabidopsis thaliana is well described and mainly relies on a tripartite complex formed by the cell surface lysin motif receptor-like kinases (LysM-RLKs) AtLYK1/CERK1, AtLYK4 and AtLYK5, the latter having the strongest affinity for COS. In grapevine, COS perception has for the moment only been demonstrated to rely on two PRRs VvLYK1-1 and VvLYK1-2. Here, we investigated additional players by overexpressing in Arabidopsis the two putative AtLYK5 orthologs from grapevine, VvLYK5-1 and VvLYK5-2. Expression of VvLYK5-1 in the atlyk4/5 double mutant background restored COS sensitivity, such as chitin-induced MAPK activation, defense gene expression, callose deposition and conferred non-host resistance to grapevine downy mildew (Erysiphe necator). Protein-protein interaction studies conducted in planta revealed a chitin oligomer-triggered interaction between VvLYK5-1 and VvLYK1-1. Interestingly, our results also indicate that VvLYK5-1 mediates the perception of chitin but not chitosan oligomers showing a part of its specificity.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121502, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35752036

RESUMO

Bacterial spores can cause significant problems such as food poisoning (like neurotoxin or emetic toxin) or serious illnesses (like anthrax or botulism). This dormant form of bacteria, made of several layers of barriers which provide extreme resistance to many abiotic stresses (radiation, temperature, pressure, etc.), are difficult to investigate in situ. To better understand the biological and chemical mechanisms involved and specific to spores resistance, the acquisition of environmental parameters is necessary. For that purpose, our research has been focused on the detection and analysis of a unique spore component, dipicolinic acid (DPA), used as the main in situ metabolite for sporulating bacteria detection. In its native form, DPA is only weakly fluorescent but after Ultraviolet irradiation at the wavelength of 254 nm (UVc), DPA photoproducts (DPAp) exhibit a remarkable fluorescence signal. These photoproducts are rarely identified and part of this study gives new insights offered by mass spectrometry (MS) in the determination of DPA photoproducts. Thanks to DPA assay techniques and fluorescence spectrometry, we highlighted the instability of photoproducts and introduced new assumptions on the effects of UVc on DPA. Studies in spectroscopy and microscopy allowed us to better understand these native probes in bacterial spores and will allow the implementation of a new method for studying the physico-chemical parameters of spore resistance.


Assuntos
Ácidos Picolínicos , Esporos Bacterianos , Ácidos Picolínicos/química , Espectrometria de Fluorescência , Esporos Bacterianos/química , Raios Ultravioleta
12.
Food Chem ; 370: 131370, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34662797

RESUMO

In this study, stationary and time-resolvedfluorescence signatures, were statistically and chemometrically analyzed among three typologies of Chardonnay wines (A, B and C) with the objectives to evaluate their sensitivity to acidic and polyphenolic changes. For that purpose, a dataset was built using Excitation Emission Matrices of fluorescence (N = 103) decomposed by a Parallel Factor Analysis (PARAFAC), andfluorescence decays (N = 22), mathematically fitted, using the conventional exponential modeling and the phasor plot representation. Wine PARAFAC component C4 coupledwith its phasor plot g and s values enable the description of malolactic fermentation (MLF) occurrence in Chardonnay wines. Such proxies reflect wine concentration modifications in total acidity, malic/lactic and phenol acids.Lower g values among fresh MLF + wines compared to MLF- wines are explained by a quenching effect on wine fluorophores by both organic and phenolic acids.The combination of multispectral fluorescence parametersopens a novel routinely implementable methodology to diagnose fermentative processes.


Assuntos
Vinho , Fermentação , Fluorescência , Malatos , Vinho/análise
13.
Gut Microbes ; 14(1): 2004798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35086419

RESUMO

Candida albicans (C. albicans) is an opportunistic pathogen causing infections ranging from superficial to life-threatening disseminated infections. In a susceptible host, C. albicans is able to translocate through the gut barrier, promoting its dissemination into deeper organs. C. albicans hyphae can invade human epithelial cells by two well-documented mechanisms: epithelial-driven endocytosis and C. albicans-driven active penetration. One mechanism by which host cells protect themselves against intracellular C. albicans is termed autophagy. The protective role of autophagy during C. albicans infection has been investigated in myeloid cells; however, far less is known regarding the role of this process during the infection of epithelial cells. In the present study, we investigated the role of autophagy-related proteins during the infection of epithelial cells, including intestinal epithelial cells and gut explants, by C. albicans. Using cell imaging, we show that key molecular players of the autophagy machinery (LC3-II, PI3P, ATG16L1, and WIPI2) were recruited at Candida invasion sites. We deepened these observations by electron microscopy analyses that reveal the presence of autophagosomes in the vicinity of invading hyphae. Importantly, these events occur during active penetration of C. albicans into host cells and are associated with plasma membrane damage. In this context, we show that the autophagy-related key proteins ATG5 and ATG16L1 contribute to plasma membrane repair mediated by lysosomal exocytosis and participate in protecting epithelial cells against C. albicans-induced cell death. Our findings provide a novel mechanism by which epithelial cells, forming the first line of defense against C. albicans in the gut, can react to limit C. albicans invasion.


Assuntos
Autofagia , Candida albicans/fisiologia , Candidíase/microbiologia , Membrana Celular/microbiologia , Células Epiteliais/microbiologia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Candida albicans/genética , Candidíase/genética , Candidíase/metabolismo , Candidíase/fisiopatologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
14.
Front Microbiol ; 12: 725379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421883

RESUMO

Kombucha pellicles are often used as inoculum to produce this beverage and have become a signature feature. This cellulosic biofilm produced by acetic acid bacteria (AAB) involves yeasts, which are also part of the kombucha consortia. The role of microbial interactions in the de novo formation and structure of kombucha pellicles was investigated during the 3 days following inoculation, using two-photon microscopy coupled with fluorescent staining. Aggregated yeast cells appear to serve as scaffolding to which bacterial cellulose accumulates. This initial foundation leads to a layered structure characterized by a top cellulose-rich layer and a biomass-rich sublayer. This sublayer is expected to be the microbiologically active site for cellulose production and spatial optimization of yeast-AAB metabolic interactions. The pellicles then grow in thickness while expanding their layered organization. A comparison with pellicles grown from pure AAB cultures shows differences in consistency and structure that highlight the impact of yeasts on the structure and properties of kombucha pellicles.

15.
Methods Appl Fluoresc ; 7(3): 035004, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30974420

RESUMO

A multivariate image is an image stack in which each pixel contains several variables. Such images are common in many fields (medicine, imaging microscopy, satellite imaging...) and their analysis requires adapted multivariate statistical methods. In fluorescence imaging microscopy, different probes or different measurements such as intensity, fluorescence lifetime or spectral information can be observed from one view. However, this is not yet analysed as multivariate images. Here, we are presenting a full approach of multivariate analysis of fluorescence microscopy images and we are proposing a free R package (multifluo) to conduct it.

16.
Sci Rep ; 9(1): 19682, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873094

RESUMO

In 1665, Robert Hooke was the first to observe cork cells and their characteristic hexagonal shape, using the first optical microscope, which was invented by him at that time. With the evolution of imaging techniques, the structure of cork has been analysed with greater accuracy over time. This work presents the latest advances in the characterization of this unique material through a multiscale approach. Such investigation brings new insight into the architecture of cork, particularly the differences between the cells of the phellem and those bordering the lenticels. In the latter case, cell differentiation from the lenticular phellogen was restricted to one cell layer, which leads to a cell wall that is 10 times thicker for lenticels. They also displayed a different chemical composition because of unsuberization and a high lignin content in lenticels. Such advances in the knowledge of the structure and composition of cork cells contributes to a better understanding of the macroporosity of cork, down to the nanoscale.

17.
Oncotarget ; 9(70): 33302-33311, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30279961

RESUMO

Chloride intracellular channel 1 (CLIC1) is highly expressed and secreted by human glioblastoma cells and cell lines such as U87, initiating cell migration and tumor growth. Here, we examined whether CLIC1 could be transferred to human primary microvascular endothelial cells (HMEC). We previously reported that the oncogenic microRNA, miR-5096, increased the release of extracellular vesicles (EVs) by which it increased its own transfer from U87 to surrounding cells. Thus, we also examined its effect on the CLIC1 transfer. In homotypic cultures, miR-5096 did not increase the expression of CLIC1 in U87 nor in HMEC. However, the endothelial CLIC1 level increased after exposure to EVs released by U87, and even more by miR-5096-loaded U87. The EVs-transferred CLIC1 was active in HMEC, promoting endothelial sprouting in matrigel. Cell exposure to EVs induced cytosolic Ca2+ spikes which were dependent on the transient receptor potential melastatin member 7 (TRPM7). TRPM7 silencing prevented Ca2+ spikes and the subsequent CLIC1 delivery into HMEC. Our data suggest that the vesicular transfer of CLIC1 between cells requires TRMP7 expression in recipient endothelial cells. How the vesicular transfer of CLIC1 is modulated in cancer therapy is a future challenge.

18.
Biotechnol J ; 13(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28887909

RESUMO

Quercetin is a fragile bioactive compound. Several works have tried to preserve it by encapsulation but the form of encapsulation (mono- or supra-molecular structure, tautomeric form), though important for stability and bioavailability, remains unknown. The present work aims at developing a fluorescence lifetime technique to evaluate the structure of quercetin during encapsulation in a vector capsule that has already proven efficiency, yeast cells. Molecular stabilization was observed during a 4-month storage period. The time-correlated single-photon counting (TCSPC) technique was used to evaluate the interaction between quercetin molecules and the yeast capsule. The various tautomeric forms, as identified by UV-Vis spectroscopy, result in various lifetimes in TCSPC, although they varied also with the buffer environment. Quercetin in buffer exhibited a three-to-four longer long-time after 24 h (changing from 6-7 to 18-23 ns), suggesting an aggregation of molecules. In yeast microcapsules, the long-time population exhibited a longer lifetime (around 27 ns) from the beginning and concerned about 20% of molecules compared to dispersed quercetin. This shows that lifetime analysis can show the monomolecular instability of quercetin in buffer and the presence of interactions between quercetin molecules and their microcapsules.


Assuntos
Estrutura Molecular , Quercetina/química , Cápsulas/química , Fluorescência , Fótons , Saccharomyces cerevisiae/química , Espectrometria de Fluorescência
19.
Front Microbiol ; 9: 2640, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455675

RESUMO

Blue light (400-430 nm) is known to induce lethal effects in some species of fungi by photo-oxidation caused by the excitation of porphyrins but the mechanisms involved remain poorly understood. In this work, we exposed the yeast Saccharomyces cerevisiae to a high density light flux with two-photon excitation (830 nm equivalent to a one-photon excitation around 415 nm) and used quasi real-time visualization with confocal microscopy to study the initiation and dynamics of photo-oxidation in subcellular structures. Our results show that the oxidation generated by light treatments led to the permeabilization of the plasma membrane accompanied by the sudden expulsion of the cellular content, corresponding to cell death by necrosis. Moreover, excitation in the plasma membrane led to very fast oxidation and membrane permeabilization (<60 s) while excitation at the center of the cell did not induce permeabilization even after a period exceeding 600 s. Finally, our study shows that the relationship between the laser power used for two-photon excitation and the time required to permeabilize the plasma membrane was not linear. Thus, the higher the power used, the lower the energy required to permeabilize the plasma membrane. We conclude that fungal destruction can be generated very quickly using a high density light flux. Better knowledge of the intracellular processes and the conditions necessary to induce necrosis should make it possible in the future to improve the efficiency of antimicrobial strategies photo-oxidation-based.

20.
Front Immunol ; 9: 3149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30693000

RESUMO

Autophagy is a lysosomal degradation process that contributes to host immunity by eliminating invasive pathogens and the modulating inflammatory response. Several infectious and immune disorders are associated with autophagy defects, suggesting that stimulation of autophagy in these diseases should be beneficial. Here, we show that resveratrol is able to boost xenophagy, a selective form of autophagy that target invasive bacteria. We demonstrated that resveratrol promotes in vitro autophagy-dependent clearance of intracellular bacteria in intestinal epithelial cells and macrophages. These results were validated in vivo using infection in a transgenic GFP-LC3 zebrafish model. We also compared the ability of resveratrol derivatives, designed to improve the bioavailability of the parent molecule, to stimulate autophagy and to induce intracellular bacteria clearance. Together, our data demonstrate the ability of resveratrol to stimulate xenophagy, and thereby enhance the clearance of two invasive bacteria involved life-threatening diseases, Salmonella Typhimurium and Crohn's disease-associated Adherent-Invasive Escherichia coli. These findings encourage the further development of pro-autophagic nutrients to strengthen intestinal homeostasis in basal and infectious states.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Resveratrol/farmacologia , Animais , Linhagem Celular , Enterocolite/etiologia , Enterocolite/metabolismo , Células Epiteliais/microbiologia , Escherichia coli/imunologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Macrófagos/microbiologia , Camundongos , Salmonella typhimurium/imunologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA