Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dis Aquat Organ ; 130(3): 187-197, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30259871

RESUMO

Chytridiomycosis and ranavirosis are 2 emerging infectious diseases that have caused significant global amphibian decline. Although both have received much scrutiny, little is known about interactions between the 2 causative agents Batrachochytrium dendrobatidis (Bd) and ranavirus (Rv) at the individual host and population levels. We present the first longitudinal assessment of Bd, Rv, and co-infections of a temperate amphibian assemblage in North America. From 2012 to 2016, we assessed the temporal oscillations of Bd, Rv and co-infection dynamics in a sample of 729 animals representing 13 species. Bd, Rv, and co-infected amphibians were detected during all 5 yr. Bd, Rv, and co-infection prevalence all varied annually, with the lowest instances of each at 2.1% (2013), 7.9% (2016), and 0.6% (2016), respectively. The highest Bd, Rv, and co-infection prevalence were recorded in 2012 (26.8%), 2016 (38.3%), and 2015 (10.3%), respectively. There was no association between Bd or Rv infection prevalence and co-infection, either when assessing the entire amphibian assemblage as a whole (odds ratio 1.32, 95% CI: 0.83-2.1, p = 0.29) or within species for amphibians that were more numerically represented (n > 40, p > 0.05). This suggests neither Bd nor Rv facilitate host co-infections within the sampled host assemblage. Instead, the basis for co-infections is the spatiotemporal distribution of both pathogens. Despite lack of interplay between Bd and Rv in this population, our study highlights the importance of considering numerous pathogens that may be present within amphibian habitats in order to properly anticipate interactions that may have direct bearing on disease outcomes.


Assuntos
Anfíbios , Quitridiomicetos , Coinfecção , Ranavirus , Anfíbios/microbiologia , Anfíbios/virologia , Animais , Quitridiomicetos/isolamento & purificação , Micoses/veterinária , Ranavirus/isolamento & purificação
2.
Front Microbiol ; 12: 725021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733247

RESUMO

Background: The phyllosphere is subjected to fluctuating abiotic conditions. This study examined the phenotypic plasticity (PP) of four selected non-phototrophic phyllosphere bacteria [control strain: Pseudomonas sp. DR 5-09; Pseudomonas agarici, Bacillus thuringiensis serovar israeliensis (Bti), and Streptomyces griseoviridis (SG)] regarding their respiration patterns and surfactant activity as affected by light spectrum and nutrient supply. Methods: The PP of the strains was examined under four light regimes [darkness (control); monochromatic light-emitting diodes (LED) at 460 nm (blue) and 660 nm (red); continuously polychromatic white LEDs], in the presence of 379 substrates and conditions. Results: Light treatment affected the studied bacterial strains regarding substrate utilization (Pseudomonas strains > SG > Bti). Blue LEDs provoked the most pronounced impact on the phenotypic reaction norms of the Pseudomonas strains and Bti. The two Gram-positive strains Bti and SG, respectively, revealed inconsistent biosurfactant formation in all cases. Biosurfactant formation by both Pseudomonas strains was supported by most substrates incubated in darkness, and blue LED exposure altered the surface activity profoundly. Blue and white LEDs enhanced biofilm formation in PA in highly utilized C-sources. Putative blue light receptor proteins were found in both Pseudomonas strains, showing 91% similarity with the sequence from NCBI accession number WP_064119393. Conclusion: Light quality-nutrient interactions affect biosurfactant activity and biofilm formation of some non-phototrophic phyllosphere bacteria and are, thus, crucial for dynamics of the phyllosphere microbiome.

3.
Front Microbiol ; 11: 608086, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584570

RESUMO

This study examined the biological and food safety relevance of leaf lesions for potential invasion of food pathogens into the plant tissue (internalization). This was done by determining the role of artificial leaf damage in terms of damaged leaf area on proliferation of E. coli O157:H7 gfp+. In a two-factorial experiment, unwashed fresh baby leaf spinach (Spinacia oleracea L.) was subjected to four damage levels (undamaged, low, moderate, high damage; factor 1) and three incubation intervals (0, 1, 2 days post-inoculation; factor 2). Individual leaves were immersed for 15 s in a suspension loaded with E. coli O157:H7 gfp+ (106 CFU × mL-1). The leaves were analyzed individually using image analysis tools to quantify leaf area and number and size of lesions, and using confocal laser scanning and scanning electron microscopy to visualize leaf lesions and presence of the introduced E. coli strain on and within the leaf tissue. Prevalence of E. coli O157:H7 gfp+ was assessed using a culture-dependent technique. The results showed that size of individual lesions and damaged leaf area affected depth of invasion into plant tissue, dispersal to adjacent areas, and number of culturable E. coli O157:H7 gfp+ directly after inoculation. Differences in numbers of the inoculant retrieved from leaf macerate evened out from 2 days post-inoculation, indicating rapid proliferation during the first day post-inoculation. Leaf weight was a crucial factor, as lighter spinach leaves (most likely younger leaves) were more prone to harbor E. coli O157:H7 gfp+, irrespective of damage level. At the high inoculum density used, the risk of consumers' infection was almost 100%, irrespective of incubation duration or damage level. Even macroscopically intact leaves showed a high risk for infection. These results suggest that the risk to consumers is correlated with how early in the food chain the leaves are contaminated, and the degree of leaf damage. These findings should be taken into account in different steps of leafy green processing. Further attention should be paid to the fate of viable, but non-culturable, shiga-toxigenic E. coli on and in ready-to-eat leafy vegetables.

4.
Plant Methods ; 16: 62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391069

RESUMO

BACKGROUND: Field-grown leafy vegetables can be damaged by biotic and abiotic factors, or mechanically damaged by farming practices. Available methods to evaluate leaf tissue damage mainly rely on colour differentiation between healthy and damaged tissues. Alternatively, sophisticated equipment such as microscopy and hyperspectral cameras can be employed. Depending on the causal factor, colour change in the wounded area is not always induced and, by the time symptoms become visible, a plant can already be severely affected. To accurately detect and quantify damage on leaf scale, including microlesions, reliable differentiation between healthy and damaged tissue is essential. We stained whole leaves with trypan blue dye, which traverses compromised cell membranes but is not absorbed in viable cells, followed by automated quantification of damage on leaf scale. RESULTS: We present a robust, fast and sensitive method for leaf-scale visualisation, accurate automated extraction and measurement of damaged area on leaves of leafy vegetables. The image analysis pipeline we developed automatically identifies leaf area and individual stained (lesion) areas down to cell level. As proof of principle, we tested the methodology for damage detection and quantification on two field-grown leafy vegetable species, spinach and Swiss chard. CONCLUSIONS: Our novel lesion quantification method can be used for detection of large (macro) or single-cell (micro) lesions on leaf scale, enabling quantification of lesions at any stage and without requiring symptoms to be in the visible spectrum. Quantifying the wounded area on leaf scale is necessary for generating prediction models for economic losses and produce shelf-life. In addition, risk assessments are based on accurate prediction of the relationship between leaf damage and infection rates by opportunistic pathogens and our method helps determine the severity of leaf damage at fine resolution.

5.
Appl Environ Microbiol ; 74(14): 4292-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18515478

RESUMO

The aim of this study was to determine the temporal release of fatty acids and sugars from corn and cucumber seeds during the early stages of seed germination in order to establish whether sugars found in exudate can prevent exudate fatty acid degradation by Enterobacter cloacae. Both saturated (long-chain saturated fatty acids [LCSFA]) and unsaturated (long-chain unsaturated fatty acids [LCUFA]) fatty acids were detected in corn and cucumber seed exudates within 15 min after seed sowing. LCSFA and LCUFA were released at a rate of 26.1 and 6.44 ng/min/seed by corn and cucumber seeds, respectively. The unsaturated portion of the total fatty acid pool from both plant species contained primarily oleic and linoleic acids, and these fatty acids were released at a combined rate of 6.6 and 0.67 ng/min/seed from corn and cucumber, respectively. In the absence of seed exudate sugars, E. cloacae degraded linoleic acid at rates of 29 to 39 ng/min, exceeding the rate of total fatty acid release from seeds. Sugars constituted a significant percentage of corn seed exudate, accounting for 41% of the total dry seed weight. Only 5% of cucumber seed exudate was comprised of sugars. Glucose, fructose, and sucrose were the most abundant sugars present in seed exudate from both plant species. Corn seeds released a total of 137 microg/seed of these three sugars within 30 min of sowing, whereas cucumber seeds released 0.83 microg/seed within the same time frame. Levels of glucose, fructose, and sucrose found in corn seed exudate (90 to 342 microg) reduced the rate of linoleic acid degradation by E. cloacae to 7.5 to 8.8 ng/min in the presence of either sugar, leaving sufficient concentrations of linoleic acid to activate Pythium ultimum sporangia Our results demonstrate that elevated levels of sugars in the corn spermosphere can prevent the degradation of LCUFA by E. cloacae, leading to its failure to suppress P. ultimum sporangial activation, germination, and subsequent disease development.


Assuntos
Enterobacter cloacae/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Ácido Linoleico/metabolismo , Sacarose/metabolismo , Antibiose , Cucumis sativus/metabolismo , Cucumis sativus/microbiologia , Germinação , Exsudatos de Plantas/metabolismo , Pythium/crescimento & desenvolvimento , Pythium/patogenicidade , Sementes/metabolismo , Fatores de Tempo , Água/metabolismo , Zea mays/metabolismo , Zea mays/microbiologia
6.
Appl Environ Microbiol ; 74(14): 4285-91, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18515482

RESUMO

Differential protection of plants by Enterobacter cloacae was studied by investigating early sensing and response behavior of Pythium ultimum sporangia toward seeds in the presence or absence of E. cloacae. Ten percent of P. ultimum sporangia were activated within the first 30 min of exposure to cucumber seeds. In contrast, 44% of the sporangia were activated as early as 15 min after exposure to corn seeds with over 80% sporangial activation by 30 min. Germ tubes emerged from sporangia after 2.5 and 1.0 h in the cucumber and corn spermospheres, respectively. Seed application of the wild-type strain of E. cloacae (EcCT-501R3) reduced sporangial activation by 45% in the cucumber spermosphere, whereas no reduction was observed in the corn spermosphere. Fatty acid transport and degradation mutants of E. cloacae (strains EcL1 and Ec31, respectively) did not reduce sporangial activation in either of the spermospheres. Although wild-type or mutant strains of E. cloacae failed to reduce seed colonization incidence, pathogen biomass on cucumber seeds was reduced in the presence of E. cloacae strains EcCT-501R3 and Ec31 by 4 and 8 h after sowing, respectively. By 12 h, levels of P. ultimum on cucumber seeds treated with E. cloacae EcCT-501R3 did not differ from levels on noninoculated seeds. On corn seeds, P. ultimum biomass was not affected by the presence of any E. cloacae strain. When introduced after sporangial activation had occurred, E. cloacae failed to reduce P. ultimum biomass on cucumber seeds compared with that on nontreated seeds. Also, increasing numbers of sporangia used to inoculate seeds yielded increased pathogen biomass at each sampling time. This indicates a direct link between the level of seed-colonizing biomass of P. ultimum and the number of activated and germinated sporangia in the spermosphere, suggesting that E. cloacae suppresses P. ultimum seed infections by reducing sporangial activation and germination within the first 30 to 90 min after sowing.


Assuntos
Antibiose , Cucumis sativus/microbiologia , Enterobacter cloacae/crescimento & desenvolvimento , Pythium/crescimento & desenvolvimento , Pythium/patogenicidade , Zea mays/microbiologia , Biomassa , DNA de Algas/isolamento & purificação , Germinação , Interações Hospedeiro-Patógeno , Reação em Cadeia da Polimerase , Análise de Regressão , Sementes/microbiologia , Fatores de Tempo
7.
Front Microbiol ; 9: 1965, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197634

RESUMO

Consumers appreciate leafy green vegetables such as baby leaves for their convenience and wholesomeness and for adding a variety of tastes and colors to their plate. In Western cuisine, leafy green vegetables are usually eaten fresh and raw, with no step in the long chain from seed to consumption where potentially harmful microorganisms could be completely eliminated, e.g., through heating. A concerning trend in recent years is disease outbreaks caused by various leafy vegetable crops and one of the most important foodborne pathogens in this context is Shiga toxin-producing Escherichia coli (STEC). Other pathogens such as Salmonella, Shigella, Yersinia enterocolitica and Listeria monocytogenes should also be considered in disease risk analysis, as they have been implicated in outbreaks associated with leafy greens. These pathogens may enter the horticultural value network during primary production in field or greenhouse via irrigation, at harvest, during processing and distribution or in the home kitchen/restaurant. The hurdle approach involves combining several mitigating approaches, each of which is insufficient on its own, to control or even eliminate pathogens in food products. Since the food chain system for leafy green vegetables contains no absolute kill step for pathogens, use of hurdles at critical points could enable control of pathogens that pose a human health risk. Hurdles should be combined so as to decrease the risk due to pathogenic microbes and also to improve microbial stability, shelf-life, nutritional properties and sensory quality of leafy vegetables. The hurdle toolbox includes different options, such as physical, physiochemical and microbial hurdles. The goal for leafy green vegetables is multi-target preservation through intelligently applied hurdles. This review describes hurdles that could be used for leafy green vegetables and their biological basis, and identifies prospective hurdles that need attention in future research.

8.
PLoS One ; 12(12): e0189862, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267321

RESUMO

Despite the overruling impact of light in the phyllosphere, little is known regarding the influence of light spectra on non-phototrophic bacteria colonizing the leaf surface. We developed an in vitro method to study phenotypic profile responses of bacterial pure cultures to different bands of the visible light spectrum using monochromatic (blue: 460 nm; red: 660 nm) and polychromatic (white: 350-990 nm) LEDs, by modification and optimization of a protocol for the Phenotype MicroArray™ technique (Biolog Inc., CA, USA). The new protocol revealed high reproducibility of substrate utilization under all conditions tested. Challenging the non-phototrophic bacterium Pseudomonas sp. DR 5-09 with white, blue, and red light demonstrated that all light treatments affected the respiratory profile differently, with blue LED having the most decisive impact on substrate utilization by impairing respiration of 140 substrates. The respiratory activity was decreased on 23 and 42 substrates under red and white LEDs, respectively, while utilization of one, 16, and 20 substrates increased in the presence of red, blue, and white LEDs, respectively. Interestingly, on four substrates contrasting utilization patterns were found when the bacterium was exposed to different light spectra. Although non-phototrophic bacteria do not rely directly on light as an energy source, Pseudomonas sp. DR 5-09 changed its respiratory activity on various substrates differently when exposed to different lights. Thus, ability to sense and distinguish between different wavelengths even within the visible light spectrum must exist, and leads to differential regulation of substrate usage. With these results, we hypothesize that different light spectra might be a hitherto neglected key stimulus for changes in microbial lifestyle and habits of substrate usage by non-phototrophic phyllospheric microbiota, and thus might essentially stratify leaf microbiota composition and diversity.


Assuntos
Luz , Pseudomonas/efeitos da radiação , Biomassa , Folhas de Planta/microbiologia , Pseudomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA