Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 18(1): 127, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938453

RESUMO

BACKGROUND: Understanding the genetic modifiers of neurodegenerative diseases can provide insight into the mechanisms underlying these disorders. Here, we examine the relationship between the motor neuron disease spinal muscular atrophy (SMA), which is caused by reduced levels of the survival of motor neuron (SMN) protein, and the actin-bundling protein Plastin 3 (PLS3). Increased PLS3 levels suppress symptoms in a subset of SMA patients and ameliorate defects in SMA disease models, but the functional connection between PLS3 and SMN is poorly understood. RESULTS: We provide immunohistochemical and biochemical evidence for large protein complexes localized in vertebrate motor neuron processes that contain PLS3, SMN, and members of the hnRNP F/H family of proteins. Using a Caenorhabditis elegans (C. elegans) SMA model, we determine that overexpression of PLS3 or loss of the C. elegans hnRNP F/H ortholog SYM-2 enhances endocytic function and ameliorates neuromuscular defects caused by decreased SMN-1 levels. Furthermore, either increasing PLS3 or decreasing SYM-2 levels suppresses defects in a C. elegans ALS model. CONCLUSIONS: We propose that hnRNP F/H act in the same protein complex as PLS3 and SMN and that the function of this complex is critical for endocytic pathways, suggesting that hnRNP F/H proteins could be potential targets for therapy development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Atrofia Muscular Espinal/genética , Proteínas de Ligação a RNA/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Animais Geneticamente Modificados/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Endocitose/genética , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
2.
Elife ; 112022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36043466

RESUMO

Metastatic breast cancer remains a major cause of cancer-related deaths in women, and there are few effective therapies against this advanced disease. Emerging evidence suggests that key steps of tumor progression and metastasis are controlled by reversible epigenetic mechanisms. Using an in vivo genetic screen, we identified WDR5 as an actionable epigenetic regulator that is required for metastatic progression in models of triple-negative breast cancer. We found that knockdown of WDR5 in breast cancer cells independently impaired their tumorigenic as well as metastatic capabilities. Mechanistically, WDR5 promotes cell growth by increasing ribosomal gene expression and translation efficiency in a KMT2-independent manner. Consistently, pharmacological inhibition or degradation of WDR5 impedes cellular translation rate and the clonogenic ability of breast cancer cells. Furthermore, a combination of WDR5 targeting with mTOR inhibitors leads to potent suppression of translation and proliferation of breast cancer cells. These results reveal novel therapeutic strategies to treat metastatic breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proliferação de Células
3.
Cell Rep ; 27(4): 1277-1292.e7, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018140

RESUMO

The brain is a major site of relapse for several cancers, yet deciphering the mechanisms of brain metastasis remains a challenge because of the complexity of the brain tumor microenvironment (TME). To define the molecular landscape of brain metastasis from intact tissue in vivo, we employ an RNA-sequencing-based approach, which leverages the transcriptome of xenografts and distinguishes tumor cell and stromal gene expression with improved sensitivity and accuracy. Our data reveal shifts in epithelial and neuronal-like lineage programs in malignant cells as they adapt to the brain TME and the reciprocal neuroinflammatory response of the stroma. We identify several transcriptional hallmarks of metastasis that are specific to particular regions of the brain, induced across multiple tumor types, and confirmed in syngeneic models and patient biopsies. These data may serve as a resource for exploring mechanisms of TME co-adaptation within, as well as across, different subtypes of brain metastasis.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/secundário , Inflamação/patologia , Neoplasias/patologia , Plasticidade Neuronal/genética , Células Estromais/patologia , Microambiente Tumoral/genética , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem da Célula , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Células Estromais/metabolismo , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Rep ; 14(9): 2180-2192, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26923591

RESUMO

DNA methyltransferase DNMT3B is frequently overexpressed in tumor cells and plays important roles during the formation and progression of several cancer types. However, the specific signaling pathways controlled by DNMT3B in cancers, including melanoma, are poorly understood. Here, we report that DNMT3B plays a pro-tumorigenic role in human melanoma and that DNMT3B loss dramatically suppresses melanoma formation in the Braf/Pten mouse melanoma model. Loss of DNMT3B results in hypomethylation of the miR-196b promoter and increased miR-196b expression, which directly targets the mTORC2 component Rictor. Loss of RICTOR in turn prevents mTORC2 activation, which is critical for melanoma formation and growth. These findings establish Dnmt3b as a regulator of melanoma formation through its effect on mTORC2 signaling. Based on these results, DNMT3B is a potential therapeutic target in melanoma.


Assuntos
Proteínas de Transporte/metabolismo , DNA (Citosina-5-)-Metiltransferases/fisiologia , Melanoma Experimental/enzimologia , Neoplasias Cutâneas/enzimologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Melanoma Experimental/mortalidade , Melanoma Experimental/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Nus , MicroRNAs/genética , Complexos Multiproteicos/metabolismo , Transplante de Neoplasias , Modelos de Riscos Proporcionais , Interferência de RNA , Proteína Companheira de mTOR Insensível à Rapamicina , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA