Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(20): e2206800, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36799188

RESUMO

Dissipative chemical systems hold the potential to enable life-like behavior in synthetic matter, such as self-organization, motility, and dynamic switching between different states. Here, out-of-equilibrium self-organization is demonstrated by interconnected source and drain droplets at an air-water interface, which display dynamic behavior due to a hydrolysis reaction that generates a concentration gradient around the drain droplets. This concentration gradient interferes with the adhesion of self-assembled amphiphile filaments that grow from a source droplet. The chemical gradient sustains a unique orbiting of the drain droplet, which is proposed to be driven by the selective adhesion of the filaments to the front of the moving droplet, while filaments approaching from behind are destabilized upon contact with the hydrolysis product in the trail of the droplet. Potential applications are foreseen in the transfer of chemical signals amongst communicating droplets in rearranging networks, and the implementation of chemical reactions to drive complex positioning routines in life-like systems.

2.
Langmuir ; 38(35): 10799-10809, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36005886

RESUMO

Self-organization of meso- and macroscale structures is a highly active research field that exploits a wide variety of physicochemical phenomena, including surface tension, Marangoni flow, and (elasto)capillary effects. The release of surface-active compounds generates Marangoni flows that cause repulsion, whereas capillary forces attract floating particles via the Cheerios effect. Typically, the interactions resulting from these effects are nonselective because the gradients involved are uniform. In this work, we unravel the mechanisms involved in the self-organization of amphiphile filaments that connect and attract droplets floating at the air-water interface, and we demonstrate their potential for directional gradient formation and thereby selective interaction. We simulate Marangoni flow patterns resulting from the release and depletion of amphiphile molecules by source and drain droplets, respectively, and we predict that these flow patterns direct the growth of filaments from the source droplets toward specific drain droplets, based on their amphiphile depletion rate. The interaction between such droplets is then investigated experimentally by charting the flow patterns in their surroundings, while the role of filaments in source-drain attraction is studied using microscopy. Based on these observations, we attribute attraction of drain droplets and even solid objects toward the source to elastocapillary effects. Finally, the insights from our simulations and experiments are combined to construct a droplet-based system in which the composition of drain droplets regulates their ability to attract filaments and as a consequence be attracted toward the source. Thereby, we provide a novel method through which directional attraction can be established in synthetic self-organizing systems and advance our understanding of how complexity arises from simple building blocks.


Assuntos
Citoesqueleto , Água , Microscopia , Tensão Superficial , Água/química
3.
Phys Chem Chem Phys ; 24(39): 23980-24001, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36172850

RESUMO

Living organisms employ chemical self-organization to build structures, and inspire new strategies to design synthetic systems that spontaneously take a particular form, via a combination of integrated chemical reactions, assembly pathways and physicochemical processes. However, spatial programmability that is required to direct such self-organization is a challenge to control. Thermodynamic equilibrium typically brings about a homogeneous solution, or equilibrium structures such as supramolecular complexes and crystals. This perspective addresses out-of-equilibrium gradients that can be driven by coupling chemical reaction, diffusion and hydrodynamics, and provide spatial differentiation in the self-organization of molecular, ionic or colloidal building blocks in solution. These physicochemical gradients are required to (1) direct the organization from the starting conditions (e.g. a homogeneous solution), and (2) sustain the organization, to prevent it from decaying towards thermodynamic equilibrium. We highlight four different concepts that can be used as a design principle to establish such self-organization, using chemical reactions as a driving force to sustain the gradient and, ultimately, program the characteristics of the gradient: (1) reaction-diffusion coupling; (2) reaction-convection; (3) the Marangoni effect and (4) diffusiophoresis. Furthermore, we outline their potential as attractive pathways to translate chemical reactions and molecular/colloidal assembly into organization of patterns in solution, (dynamic) self-assembled architectures and collectively moving swarms at the micro-, meso- and macroscale, exemplified by recent demonstrations in the literature.


Assuntos
Hidrodinâmica , Difusão , Termodinâmica
4.
Nat Commun ; 11(1): 4800, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968072

RESUMO

Out-of-equilibrium molecular systems hold great promise as dynamic, reconfigurable matter that executes complex tasks autonomously. However, translating molecular scale dynamics into spatiotemporally controlled phenomena emerging at mesoscopic scale remains a challenge-especially if one aims at a design where the system itself maintains gradients that are required to establish spatial differentiation. Here, we demonstrate how surface tension gradients, facilitated by a linear amphiphile molecule, generate Marangoni flows that coordinate the positioning of amphiphile source and drain droplets floating at air-water interfaces. Importantly, at the same time, this amphiphile leads, via buckling instabilities in lamellar systems of said amphiphile, to the assembly of millimeter long filaments that grow from the source droplets and get absorbed at the drain droplets. Thereby, the Marangoni flows and filament organization together sustain the autonomous positioning of interconnected droplet-filament networks at the mesoscale. Our concepts provide potential for the development of non-equilibrium matter with spatiotemporal programmability.


Assuntos
Citoesqueleto/química , Bainha de Mielina/química , Fenômenos Físicos , Cinética , Microscopia , Simulação de Dinâmica Molecular , Tensão Superficial , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA