Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 235: 115596, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37540995

RESUMO

Monoclonal antibodies (mAbs) used as therapeutics need comprehensive characterization for appropriate quality assurance. For analysis, cost-effective methods are of high importance, especially when it comes to biosimilar development which is based on extended physicochemical characterization. The use of forced degradation to study the occurrence of modifications for analysis is well established in drug development and may be used for the evaluation of critical quality attributes (CQAs). For mAb analysis different procedures of liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses are commonly applied. In this study the middle-up approach is compared to the more expensive bottom-up analysis in a forced oxidation biosimilar comparability study. Bevacizumab and infliximab as well as biosimilar candidates for the two mAbs were forcefully oxidized by H2O2 for 24, 48 and 72 h. For bottom-up, the reduced and alkylated trypsin or Lys-C digested samples were analysed by LC-MS with quadrupole time-of-flight mass analyser (LC-QTOF-MS) to detect susceptible residues. By middle-up analysis several species of every subunit (Fc/2, light chain and Fd') were detected which differed in the number of oxidations. For the most abundant species, results from middle-up were in line with results from bottom-up analysis, confirming the strength of middle-up analysis. However, for less abundant species of some subunits, results differed between the two approaches. In both mAbs, the Fc was extensively oxidized. In infliximab, additional extensive oxidation was found in the Fab. Assignment to specific amino acid residues was finally possible using the results from bottom-up analyses. Interestingly, the C-terminal cysteine of the light chain was partially found triply oxidized in both mAbs. The comparison of susceptibility to oxidation showed high similarity between the reference products and their biosimilar candidates. It is suggested that the findings of middle-up experiments should be complemented by bottom-up analysis to confirm the assignments of the localization of modifications. Once the consistency of results has been established, middle-up analyses are sufficient in extended forced degradation biosimilar studies.


Assuntos
Medicamentos Biossimilares , Infliximab/química , Bevacizumab , Medicamentos Biossimilares/química , Peróxido de Hidrogênio , Anticorpos Monoclonais/química , Espectrometria de Massas/métodos
2.
Glycobiology ; 20(12): 1607-18, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20639190

RESUMO

All IgG-type antibodies are N-glycosylated in their Fc part at Asn-297. Typically, a fucose residue is attached to the first N-acetylglucosamine of these complex-type N-glycans. Antibodies lacking core fucosylation show a significantly enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and an increased efficacy of anti-tumor activity. In cases where the clinical efficacy of an antibody is to some extent mediated by its ADCC effector function, afucosylated N-glycans could help to reduce dose requirement and save manufacturing costs. Using Chinese hamster ovary (CHO) cells as a model, we demonstrate here that heterologous expression of the prokaryotic enzyme GDP-6-deoxy-d-lyxo-4-hexulose reductase within the cytosol can efficiently deflect the fucose de novo pathway. Antibody-producing CHO cells that were modified in this way secrete antibodies lacking core fucose as demonstrated by MALDI-TOF mass spectrometry and HPAEC-PAD monosaccharide analysis. Engineering of the fucose de novo pathway has led to the construction of IgGs with a strongly enhanced ADCC effector function. The method described here should have broad practical applicability for the development of next-generation therapeutic antibodies.


Assuntos
Anticorpos Monoclonais/biossíntese , Proteínas de Bactérias/biossíntese , Imunoglobulina G/biossíntese , Oxirredutases Atuantes sobre Doadores de Grupos Aldeído ou Oxo/biossíntese , Modificação Traducional de Proteínas , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/biossíntese , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais Humanizados , Proteínas de Bactérias/genética , Células CHO , Cricetinae , Cricetulus , Glicosilação , Imunoglobulina G/genética , Oxirredutases Atuantes sobre Doadores de Grupos Aldeído ou Oxo/genética , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética , Trastuzumab
3.
Bioengineering (Basel) ; 6(3)2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31330921

RESUMO

Oxidation of monoclonal antibodies (mAbs) can impact their efficacy and may therefore represent critical quality attributes (CQA) that require evaluation. To complement classical CQA, bevacizumab and infliximab were subjected to oxidative stress by H2O2 for 24, 48, or 72 h to probe their oxidation susceptibility. For investigation, a middle-up approach was used utilizing liquid chromatography hyphenated with mass spectrometry (LC-QTOF-MS). In both mAbs, the Fc/2 subunit was completely oxidized. Additional oxidations were found in the light chain (LC) and in the Fd' subunit of infliximab, but not in bevacizumab. By direct comparison of methionine positions, the oxidized residues in infliximab were assigned to M55 in LC and M18 in Fd'. The forced oxidation approach was further exploited for comparison of respective biosimilar products. Both for bevacizumab and infliximab, comparison of posttranslational modification profiles demonstrated high similarity of the unstressed reference product (RP) and the biosimilar (BS). However, for bevacizumab, comparison after forced oxidation revealed a higher susceptibility of the BS compared to the RP. It may thus be considered a useful tool for biopharmaceutical engineering, biosimilarity assessment, as well as for quality control of protein drugs.

4.
Biotechniques ; 36(5): 864-70, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15152607

RESUMO

The peptide tag GATPQDLNTML, corresponding to amino acids 46-56 of the human immunodeficiency virus type 1 (HIV-1) capsid protein p24, is the linear epitope of the murine monoclonal antibody CB4-1. This antibody shows high affinity (KD = 1.8 x 10(-8) M) to the free epitope peptide in solution. The original p24 peptide tag and mutant derivatives were fused to the C terminus of a single-chain antibody (scFv) and characterized with respect to sensitivity in Western blot analyses and behavior in purification procedures using affinity chromatography. The p24 tag also proved to be a suitable alternative to the (Gly4Ser)3 linker commonly used to connect single-chain antibody variable regions derived from a heavy (VH) and light chain (VL). Binding of CB4-1 antibody to the p24 tag was not hampered when the tag was located internally in the protein sequence, and the specific antigen affinity of the scFv was only slightly reduced. All scFv variants were solubly expressed in Escherichia coli and could be purified from the periplasm. Our results highlight the p24 tag as a useful tool for purifying and detecting recombinantly expressed scFvs.


Assuntos
Fracionamento Químico/métodos , Cromatografia de Afinidade/métodos , Proteína do Núcleo p24 do HIV/genética , Fragmentos de Imunoglobulinas/análise , Mutagênese Insercional/métodos , Peptídeos/genética , Marcadores de Afinidade , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Fragmentos de Imunoglobulinas/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA