Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(17): 177601, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498689

RESUMO

Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La_{2-x}Sr_{x}NiO_{4}, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature "disordered" state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, we use neutron scattering measurements on an x=0.25 crystal to demonstrate that the dispersion of the charge-stripe excitations is anisotropic. This observation provides compelling evidence for the presence of electronic nematic order.

2.
Nat Commun ; 15(1): 1918, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429271

RESUMO

The combination of a geometrically frustrated lattice, and similar energy scales between degrees of freedom endows two-dimensional Kagome metals with a rich array of quantum phases and renders them ideal for studying strong electron correlations and band topology. The Kagome metal, FeGe is a noted example of this, exhibiting A-type collinear antiferromagnetic (AFM) order at TN ≈ 400 K, then establishes a charge density wave (CDW) phase coupled with AFM ordered moment below TCDW ≈ 110 K, and finally forms a c-axis double cone AFM structure around TCanting ≈ 60 K. Here we use neutron scattering to demonstrate the presence of gapless incommensurate spin excitations associated with the double cone AFM structure of FeGe at temperatures well above TCanting and TCDW that merge into gapped commensurate spin waves from the A-type AFM order. Commensurate spin waves follow the Bose factor and fit the Heisenberg Hamiltonian, while the incommensurate spin excitations, emerging below TN where AFM order is commensurate, start to deviate from the Bose factor around TCDW, and peaks at TCanting. This is consistent with a critical scattering of a second order magnetic phase transition with decreasing temperature. By comparing these results with density functional theory calculations, we conclude that the incommensurate magnetic structure arises from the nested Fermi surfaces of itinerant electrons and the formation of a spin density wave order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA