Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochim Biophys Acta ; 1858(4): 767-75, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26826271

RESUMO

The Twin-arginine translocation (Tat) pathway serves for translocation of fully folded proteins across the cytoplasmic membrane in bacterial and chloroplast thylakoid membranes. The Escherichia coli Tat system consists of three core components: TatA, TatB, and TatC. The TatB and TatC subunits form the receptor complex for Tat dependent proteins. The TatB protein is composed of a single transmembrane helix and cytoplasmic domain. The structure of TatC revealed six transmembrane helices. Redox Enzyme Maturation Proteins (REMPs) are system specific chaperones, which play roles in the maturation of Tat dependent respiratory enzymes. Here we applied the in vivo bacterial two-hybrid technique to investigate interaction of REMPs with the TatBC proteins, finding that all but the formate dehydrogenase REMP dock to TatB or TatC. We focused on the NarJ subfamily, where DmsD--the REMP for dimethyl sulfoxide reductase in E. coli--was previously shown to interact with TatB and TatC. We found that these REMPs interact with TatC cytoplasmic loops 1, 2 and 4, with the exception of NarJ, that only interacts with 1 and 4. An in vitro isothermal titration calorimetry study was applied to confirm the evidence of interactions between TatC fragments and DmsD chaperone. Using a peptide overlapping array, it was shown that the different NarJ subfamily REMPs interact with different regions of the TatB cytoplasmic domains. The results demonstrate a role of REMP chaperones in targeting respiratory enzymes to the Tat system. The data suggests that the different REMPs may have different mechanisms for this task.


Assuntos
Membrana Celular/química , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Chaperonas Moleculares/química , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína
2.
Biochemistry ; 54(11): 2040-51, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25659414

RESUMO

The system specific chaperone DmsD interacts with the twin-arginine leader peptide of its substrate, DmsA, allowing for proper folding and assembly of the DmsA catalytic subunit of dimethyl sulfoxide reductase prior to translocation by the twin-arginine translocase. DmsD residues important for binding the complete 45-amino acid sequence of the DmsA leader (DmsAL) peptide were previously identified and found to cluster in a pocket of the DmsD structure. In this study, we have utilized isothermal titration calorimetry (ITC) to determine the dissociation constant and thermodynamic parameters of 15 single-substitution DmsD variant proteins and a synthetic DmsAL peptide consisting of 27 amino acids (DmsAL15₋41). The stoichiometry values were determined via ITC, and the multimeric compositions of the DmsD variants in the absence and presence of peptide were characterized via size exclusion chromatography and native polyacrylamide gel electrophoresis. An up to 4-fold change in affinity was observed for DmsD variant proteins relative to that of wild-type DmsD, and variation of the entropic contribution to binding divided the binding site into two clusters: residues with either more or less favorable entropy. Substitution of hydrophobic residues along one helix face (helix 5) or prolines found on adjacent loops caused reduced binding affinity because of the increased entropic cost, which suggests that the twin-arginine motif of the DmsAL peptide binds to a preformed site on DmsD. Most DmsD variants were more than 90% monomeric in solution and bound a single peptide per protein molecule. The DmsD variant with the largest dimer population showed increased affinity and induced the formation of tetramers in the presence of peptide, suggesting that dimeric DmsD or an alternatively folded form of DmsD may play an as yet undefined role in binding.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Oxirredutases/química , Sinais Direcionadores de Proteínas , Subunidades Proteicas/química , Substituição de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Dimerização , Estabilidade Enzimática , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
Biochim Biophys Acta ; 1838(12): 2971-2984, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25157671

RESUMO

Redox enzyme maturation proteins (REMPs) are system-specific chaperones required for the maturation of complex iron sulfur molybdoenzymes that are important for anaerobic respiration in bacteria. Although they perform similar biological roles, REMPs are strikingly different in terms of sequence, structure, systems biology, and type of terminal electron acceptor that it supports for growth. Here we critically dissect current knowledge pertaining to REMPs of the nitrate reductase delta superfamily, specifically recognized in Escherichia coli to include NarJ, NarW, TorD, DmsD, and YcdY, also referred to as the NarJ REMP subfamily. We show that NarJ subfamily members share sequence homology and similar structural features as revealed by alignments performed on structurally characterized REMPs. We include an updated phylogenetic analysis of subfamily members, justifying their classification in this subfamily. The structural and functional roles of each member are presented herein and these discussions suggest that although NarJ subfamily members are related in sequence and structure, each member demonstrates remarkable uniqueness, validating the concept of system-specific chaperones.

4.
Biochemistry ; 52(43): 7532-41, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24093457

RESUMO

The system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine leader peptide of DmsA. In this study, isothermal titration calorimetry was used to investigate the thermodynamics of binding between synthetic peptides composed of different portions of the DmsA leader peptide and DmsD. Only those peptides that included the complete and contiguous hydrophobic region of the DmsA leader sequence were able to bind DmsD with a 1:1 stoichiometry. Each of the peptides that were able to bind DmsD also showed some α-helical structure as indicated by circular dichroism spectroscopy. Differential scanning calorimetry revealed that DmsD gained very little thermal stability upon binding any of the DmsA leader peptides tested. Together, these results suggest that a portion of the hydrophobic region of the DmsA leader peptide determines the specificity of binding and may produce helical properties upon binding to DmsD. Overall, this study demonstrates that the recognition of the DmsA twin-arginine leader sequence by the DmsD chaperone shows unexpected rules and confirms further that the biochemistry of the interaction of the chaperone with their leaders demonstrates differences in their molecular interactions.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Proteínas Ferro-Enxofre/química , Oxirredutases/química , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estabilidade Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Termodinâmica , Temperatura de Transição
5.
Clin Biochem ; 116: 75-78, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031902

RESUMO

OBJECTIVES: In this study, we aimed to determine the feasibility of transferring IGF-1 reference intervals between two liquid chromatography-mass spectrometry assays with distinct assay formats and calibration traceability. DESIGN AND METHODS: To adopt a reference interval (RI) for our new assay we have conducted RI transference and verification studies according to the CLSI EP28-A3c and EP9c guidelines. Specifically, the analytical agreement between the assays was evaluated using the linear model and the appropriateness of the linear model for RI transference was assessed using Deming regression, correlation coefficients, Q-Q plot, difference plot and studentized residues for the LC-MS/MS against DiaSorin LiaisonXL IGF-1 immunoassay and the liquid chromatography-high resolution mass spectrometry (LC-MS/HRMS) IGF-1 assay. Both Diasorin immunoassay and LC-MS/HRMS assays are traceable to WHO, 02/254. RESULTS: Our study showed a strong correlation (R2 > 0.93) and agreement (slope = 1.006, negligible intercept) between LC-MS/MS and LC-MS/HRMS regardless of their traceability and all statistical criteria were met per CLSI guidelines. Conversely, while the LC-MS/MS and Diasorin immunoassay results showed a strong correlation (R2 > 0.97, slope = 1.055), they failed to meet all statistical criteria for RI transference due to the bias (-44.91) and non-normal distribution of the residues. The RI verification study showed that 90% of the local LC-MS results fell within the RIs transferred from the reference LC-MS method, thus meeting CLSI EP28-A3c guidelines and permitting the transference of the reference LC-MS RIs. CONCLUSIONS: Taken together, this study provides data to suggest excellent agreement between assays traceable to distinct reference standards for IGF-1.


Assuntos
Fator de Crescimento Insulin-Like I , Laboratórios , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Imunoensaio/métodos , Padrões de Referência , Organização Mundial da Saúde
6.
Nat Commun ; 12(1): 1986, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790266

RESUMO

Many bacteria use the second messenger cyclic diguanylate (c-di-GMP) to control motility, biofilm production and virulence. Here, we identify a thermosensory diguanylate cyclase (TdcA) that modulates temperature-dependent motility, biofilm development and virulence in the opportunistic pathogen Pseudomonas aeruginosa. TdcA synthesizes c-di-GMP with catalytic rates that increase more than a hundred-fold over a ten-degree Celsius change. Analyses using protein chimeras indicate that heat-sensing is mediated by a thermosensitive Per-Arnt-SIM (PAS) domain. TdcA homologs are widespread in sequence databases, and a distantly related, heterologously expressed homolog from the Betaproteobacteria order Gallionellales also displayed thermosensitive diguanylate cyclase activity. We propose, therefore, that thermotransduction is a conserved function of c-di-GMP signaling networks, and that thermosensitive catalysis of a second messenger constitutes a mechanism for thermal sensing in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Algoritmos , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Cromatografia Líquida , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Espectrometria de Massas , Fósforo-Oxigênio Liases/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Temperatura
7.
Adv Biochem Eng Biotechnol ; 110: 195-214, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18219468

RESUMO

The identification of protein interaction partners can often elucidate the function of the protein under investigation based on the "guilty by association" concept. Furthermore, the binding event between two proteins can be used as a functional assay when no such assay is available. Despite the large number of advanced techniques that are currently available for studying protein-protein interactions, far-Westerns or blot overlays are still very commonly used in the average laboratory setting due to their powerfulness. This is due to the simplicity and clarity in the results that they produce. Here, the details and mechanics of far-Westerns are discussed to help the reader choose amongst the different variations that exist depending on the question being investigated and the materials available to them. Some examples involving unique questions are also discussed in order to educate the reader on the versatility of far-Westerns. Finally, a troubleshooting section provides the reader with an understanding of the common problems that can be encountered and how these problems can be circumvented.


Assuntos
Western Blotting/instrumentação , Western Blotting/métodos , Mapeamento de Interação de Proteínas/instrumentação , Mapeamento de Interação de Proteínas/métodos , Western Blotting/tendências , Mapeamento de Interação de Proteínas/tendências
8.
Open Biochem J ; 8: 1-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497893

RESUMO

DmsD is a chaperone of the redox enzyme maturation protein family specifically required for biogenesis of DMSO reductase in Escherichia coli. It exists in multiple folding forms, all of which are capable of binding its known substrate, the twin-arginine leader sequence of the DmsA catalytic subunit. It is important for maturation of the reductase and targeting to the cytoplasmic membrane for translocation. Here, we demonstrate that DmsD exhibits an irreversible photobleaching phenomenon upon 280 nm excitation irradiation. The phenomenon is due to quenching of the tryptophan residues in DmsD and is dependent on its folding and conformation. We also show that a tryptophan residue involved in DmsA signal peptide binding (W87) is important for photobleaching of DmsD. Mutation of W87, or binding of the DmsA twin-arginine signal peptide to DmsD in the pocket that includes W72, W80, and W91 significantly affects the degree of photobleaching. This study highlights the advantage of a photobleaching phenomenon to study protein folding and conformation changes within a protein that was once considered unusable in fluorescence spectroscopy.

9.
FEBS Lett ; 584(22): 4553-8, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20974141

RESUMO

Redox enzyme substrates of the twin-arginine translocation (Tat) system contain a RR-motif in their leader peptide and require the assistance of chaperones, redox enzyme maturation proteins (REMPs). Here various regions of the RR-containing oxidoreductase subunit (leader peptide, full preprotein with and without a leader cleavage site, mature protein) were assayed for interaction with their REMPs. All REMPs bound their preprotein substrates independent of the cleavage site. Some showed binding to either the leader or mature region, whereas in one case only the preprotein bound its REMP. The absence of Tat also influenced the amount of chaperone-substrate interaction.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/metabolismo , Oxirredutases/metabolismo , Motivos de Aminoácidos , Arginina , Domínio Catalítico , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Oxirredutases/química , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato
10.
J Mol Biol ; 389(1): 124-33, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19361518

RESUMO

The redox enzyme maturation proteins play an essential role in the proofreading and membrane targeting of protein substrates to the twin-arginine translocase. Functionally, the most thoroughly characterized redox enzyme maturation protein to date is Escherichia coli DmsD (EcDmsD). Herein, we present the X-ray crystal structure of the monomeric form of the EcDmsD refined to 2.0 A resolution, with clear electron density present for each of its 204 amino acid residues. The structural data presented here complement the biochemical data previously generated regarding the function of these twin-arginine translocase leader peptide binding chaperone proteins. Docking and molecular dynamics simulation experiments were used to provide a proposed model for how this chaperone is able to recognize the leader peptide of its substrate DmsA. The interactions observed in the model are in agreement with previous biochemical data and suggest intimate interactions between the conserved twin-arginine motif of the leader peptide of E. coli DmsA and the most conserved regions on the surface of EcDmsD.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/química , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína
11.
Biochemistry ; 47(9): 2749-59, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18247574

RESUMO

The twin-arginine translocase (Tat) system is used for the targeting and translocation of folded proteins across the cell membrane of most bacteria. Substrates of this system contain a conserved "twin-arginine" (RR) motif within their signal/leader peptide sequence. Many Tat substrates have their own system-specific chaperone called redox enzyme maturation proteins (REMPs). Here, we study the binding of DmsD, the REMP for dimethyl sulfoxide reductase in Escherichia coli, toward the RR-containing leader peptide of the catalytic subunit DmsA. We have used a multipronged approach targeted at the amino acid sequence of DmsD to define residues and regions important for recognition of the DmsA leader sequence. Residues identified through bioinformatics and THEMATICS analysis were mutated using site-directed mutagenesis. These DmsD residue variants were purified and screened with an in vitro dot-blot far-Western assay to analyze the binding to the DmsA leader sequence. Degenerative polymerase chain reaction was also used to produce a bank of random DmsD amino acid mutants, which were then screened by an in vivo bacterial two-hybrid assay. Using this hybrid method, each DmsD variant was classified into one of three groups based on their degree of interaction with the DmsA leader (none, weak, and moderate). The data from both the in vitro and in vivo analyses were then applied to a model structure of DmsD based on the crystal structure of the Salmonella typhimurium homologue. Our results illustrate the positions of important DmsD residues involved in binding the DmsA leader peptide and identify a "hot pocket" of residues important for leader binding on the structure of DmsD.


Assuntos
Arginina/química , Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Arginina/genética , Arginina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Biologia Computacional/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Ligação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA