Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(23): 235205, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29553481

RESUMO

Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

2.
J Org Chem ; 81(17): 7336-41, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27551958

RESUMO

An isomer of the 3-decalinoyltetramic acid methiosetin was synthesized for the first time. The decalin moiety was established by a late-stage intramolecular Diels-Alder cyclization catalyzed by Me2AlCl or La(OTf)3. Its high diastereoselectivity arose from stereoinduction by a well-defined metal O,O-chelate complex of the 3-acyltetramic acid moiety. The nature of the metal and the bulkiness of the residues at the tetramic acid chelator are decisive for the stereochemical outcome.

3.
Langmuir ; 31(21): 5701-11, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25954835

RESUMO

Zinc oxide (ZnO) nanoparticles (NPs) were stabilized in water using the amino acid l-cysteine. A transparent dispersion was obtained with an agglomerate size on the level of the primary particles. The dispersion was characterized by dynamic light scattering (DLS), pH dependent zeta potential measurements, scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, photoluminescence (PL) spectroscopy, and X-ray absorption fine structure (EXAFS, XANES) spectroscopy. Cysteine acts as a source for sulfur to form a ZnS shell around the ZnO core and as a stabilizer for these core-shell NPs. A large effect on the photoluminescent properties is observed: the intensity of the defect luminescence (DL) emission decreases by more than 2 orders of magnitude, the intensity of the near band edge (NBE) emission increases by 20%, and the NBE wavelength decreases with increasing cysteine concentration corresponding to a blue shift of about 35 nm due to the Burstein-Moss effect.


Assuntos
Cisteína/química , Óxido de Zinco/química , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
4.
Nano Lett ; 12(5): 2587-94, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22533700

RESUMO

We dope CdSe nanocrystals with Ag impurities and investigate their optical and electrical properties. Doping leads not only to dramatic changes but surprising complexity. The addition of just a few Ag atoms per nanocrystal causes a large enhancement in the fluorescence, reaching efficiencies comparable to core-shell nanocrystals. While Ag was expected to be a substitutional acceptor, nonmonotonic trends in the fluorescence and Fermi level suggest that Ag changes from an interstitial (n-type) to a substitutional (p-type) impurity with increased doping.

5.
J Appl Crystallogr ; 56(Pt 1): 103-109, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36777145

RESUMO

Finite size effects in partial pair distribution functions generate artefacts in the scattering structure factor and scattering intensity. It is shown how they can be overcome using a binned version of the Debye scattering equation. Accordingly, reverse Monte Carlo simulations are used for very small nanoparticles of LaFeO3 with diameters below 10 nm to simultaneously analyse X-ray scattering data and extended X-ray absorption fine structure spectra at the La K and Fe K edges. The structural information obtained is consistent regarding local structure and long-range order.

6.
J Phys Chem Lett ; 14(20): 4850-4857, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37195238

RESUMO

Filter-less, wavelength-selective photodetectors made of perovskite usually rely on the charge collection narrowing mechanism, which intrinsically limits the response times. Using the narrow excitonic peak of, e.g., two-dimensional (2D) Ruddlesden-Popper perovskites as direct absorbers to realize color-selective photodetectivity promises faster responses. However, one major challenge in realizing such devices remains the separation and charge carrier extraction of the tightly bound excitons. Here, we report on filter-less color-selective photoconductivity in 2D perovskite butylammonium lead iodide thin film devices, exhibiting a distinct resonance in the photocurrent spectrum with a full width at half-maximum of 16.5 nm that correlates to the excitonic absorption. Our devices exhibit unexpectedly efficient charge carrier separation with an external quantum efficiency of ≤8.9% at the excitonic resonance, which we trace back to the involvement of exciton polarons. Our photodetector achieves response times of 150 µs and a maximum specific detectivity of 2.5 × 1010 Jones at the excitonic peak.

7.
Sci Rep ; 12(1): 15291, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097019

RESUMO

A novel chemical vapor synthesis reactor design is used to control the pore-particle mesostructure and investigate the pore formation mechanism through the variation of residence time in oxygen. This enables the exploitation of the Kirkendall effect at the nanoscale to generate ultrasmall pores in small nanocrystalline iron oxide particles. Detailed structural characterization and quantitative data analysis of complementary high resolution transmission electron microscopy images, X-ray diffractograms, nitrogen sorption isotherms and X-ray absorption spectra provide a consistent comprehensive picture of the hollow nanoparticles from the local to the microstructure. The pore formation mechanism seems to play a key role for ß-Fe2O3 polymorph formation.

8.
J Colloid Interface Sci ; 608(Pt 3): 2681-2693, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838316

RESUMO

HYPOTHESIS: Understanding deagglomeration, agglomerate formation and structure for very small nanoparticles (NPs), due to their more facile agglomeration, is critical for processing or tailoring agglomerates for nanostructured materials. We propose that by controlling and fine-tuning the interplay of agglomeration (colloidal interaction) and deagglomeration (hydrodynamic forces), the design of agglomerate size, microstructure and morphology is possible even for very small NPs. EXPERIMENTS: Here, we investigate very small SnO2 NPs (10 nm) generated in the gas phase as model system. Small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) are used to study dispersions in aqueous media across the entire pH range (2-12) at various NaCl concentrations treated with ultrasound. Parallel to size and size distribution, agglomerate morphology and microstructure are analyzed by means of the mass fractal dimension, dm and modeled with ab initio shape simulations. The critical coagulation concentration (CCC) is determined for the alkaline region where the SnO2 NPs are highly charged. FINDINGS: Quantitative analysis of SAXS and DLS data reveals that size and size distribution of the agglomerates depend similarly on the electrostatic interaction influenced by pH and salinity as observed by the zeta potential. In contrast dm is mainly influenced by the salt concentration. Ab initio shape simulations support these experimental findings.

9.
Rev Sci Instrum ; 93(11): 113706, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461417

RESUMO

We describe a versatile reactor system for chemical vapor synthesis of nanoparticles, which enables in situ investigations of high temperature gas phase particle formation and transformation processes by x-ray scattering and x-ray absorption spectroscopy. The system employs an inductively heated hot wall reactor as the energy source to start nanoparticle formation from a mixture of precursor vapor and oxygen. By use of a modular set of susceptor segments, it is especially possible to change solely the residence time of the gas mixture while keeping all other process parameters (temperature, gas flow, pressure) constant. Corresponding time-temperature profiles are supported by computational fluid dynamics simulations. The operation of the system is demonstrated for two example studies: tin oxide nanoparticle formation studied by small angle x-ray scattering and iron oxide nanoparticle formation by x-ray absorption spectroscopy.

10.
J Nanosci Nanotechnol ; 11(12): 10839-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22409008

RESUMO

For the preparation of printed devices based on ZnO nanoparticles (ZnO NPs), stable colloidal dispersions of these materials are highly desirable. ZnO NPs have been synthesized by Chemical Vapor Synthesis. The particles have a spherical shape with a narrow size distribution. Stable aqueous dispersions of the ZnO NPs have been successfully prepared after the addition of a polymeric stabilizer. These stable dispersions have been used to print ZnO NP films on interdigital gold structures on silicon by ink-jet printing. The printing parameters have been optimized for forming layers with high quality. Close-packed ZnO NP thin films with a thickness between 100-250 nm have been prepared. Impedance spectroscopy has been used to study the gas sensing properties of the printed films at different temperatures in air and in hydrogen. The impedance spectra show the semi-circles typical for semiconducting materials. The conductance of the printed films has been measured at room temperature with high accuracy. In hydrogen gas, the conductance is larger as expected and this behavior is reversible.

11.
J Nanosci Nanotechnol ; 11(9): 7956-61, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22097512

RESUMO

Direct reduction of nitrogen oxides is still a challenge. Strong efforts have been made in developing noble and transition metal catalysts on microporous support materials such as active carbons or zeolites. However, the required activation energy and low conversion rates still limit its breakthrough. Furthermore, infiltration of such microporous matrix materials is commonly performed by wet chemistry routes. Deep infiltration and homogeneous precursor distribution are often challenging due to precursor viscosity or electrostatic shielding and may be inhibited by pore clogging. Gas phase infiltration, as an alternative, can resolve viscosity issues and may contribute to homogeneous infiltration of precursors. In the present work new catalysts based on active carbon substrates were synthesized via chemical vapor infiltration. Iron oxide nano clusters were deposited in the microporous matrix material. Detailed investigation of produced catalysts included nitrogen oxide adsorption, X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity was studied in a recycle flow reactor by time-resolved mass spectrometry at a temperature of 423 K. The infiltrated active carbons showed very homogeneous deposition of iron oxide nano clusters in the range of below 12 to 19 nm, depending on the amount of infiltrated precursor. The specific surface area was not excessively reduced, nor was the pore size distribution changed compared to the original substrate. Catalytic nitrogen oxides conversion was detected at temperatures as low as 423 K.

12.
J Nanosci Nanotechnol ; 11(6): 5028-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21770139

RESUMO

The formation of stable colloidal dispersions of silicon nanoparticles (Si-NPs) is essential for the manufacturing of silicon based electronic and optoelectronic devices using cost-effective printing technologies. However, the development of Si-NPs based printable electronics has so far been hampered by the lack of long-term stability, low production rate and poor optical properties of Si-NPs ink. In this paper, we synthesized Si-NPs in a gas phase microwave plasma reactor with very high production rate, which were later treated to form a stable colloidal dispersion. These particles can be readily dispersed in a variety of organic solvents and the dispersion is stable for months. The particles show excellent optical properties (quantum yields of about 15%) and long-term photoluminescence (PL) stability. The stable ink containing functionalized Si-NPs was successfully used to print structures on glass substrates by ink-jet printing. The homogeneity and uniformity of large-area printed film was investigated using photoluminescence (PL) mapping.

13.
Rev Sci Instrum ; 91(6): 063101, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611051

RESUMO

Technologically relevant gas phase processes rely on reactants in vapor form for the production of thin films and nanoparticles. An instrument is described which enables the investigation of such vapors by x-ray absorption spectroscopy. Corresponding in situ studies provide information about gas phase precursor chemistry and optimized synthesis processes. The setup consists of a sealed vapor container heated by a hot air bath. Inert gas filling and temperature monitoring are implemented. Fluid dynamic simulations reveal a homogeneous temperature distribution without hot or cold spots. Temperature stability better than 1 K for at least 190 min allows time-dependent measurements or improved signal to noise ratios by averaging of datasets. Iron acetylacetonate is studied as a model system. X-ray absorption spectra measured by fluorescence are of high quality, allowing a detailed analysis of X-ray Absorption Near Edge Structure (XANES) and extended x-ray absorption fine structure. A molecular structure transformation is observed in XANES spectra of iron acetylacetonate vapor above 480 K probably due to the loss of one ligand. The setup allows the investigation of low volatility compounds with vapor pressures above 2 kPa at temperatures up to 520 K.

14.
Nanotechnology ; 20(44): 445701, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19801771

RESUMO

Aluminum-doped zinc oxide nanoparticles have been prepared by chemical vapor synthesis, which facilitates the incorporation of a higher percentage of dopant atoms, far above the thermodynamic solubility limit of aluminum. The electrical properties of aluminum-doped and undoped zinc oxide nanoparticles were investigated by impedance spectroscopy. The impedance is measured under hydrogen and synthetic air between 323 and 673 K. The measurements under hydrogen as well as under synthetic air show transport properties depending on temperature and doping level. Under hydrogen atmosphere, a decreasing conductivity with increasing dopant content is observed, which can be explained by enhanced scattering processes due to an increasing disorder in the nanocrystalline material. The temperature coefficient for the doped samples switches from positive temperature coefficient behavior to negative temperature coefficient behavior with increasing dopant concentration. In the presence of synthetic air, the conductivity firstly increases with increasing dopant content by six orders of magnitude. The origin of the increasing conductivity is the generation of free charge carriers upon dopant incorporation. It reaches its maximum at a concentration of 7.7% of aluminum, and drops for higher doping levels. In all cases, the conductivity under hydrogen is higher than under synthetic air and can be changed reversibly by changing the atmosphere.

15.
J Phys Chem Lett ; 9(8): 2062-2069, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29624057

RESUMO

We study the impact of excitation energy on the photostability of methylammonium lead triiodide (CH3NH3PbI3 or MAPI) perovskite thin films. Light soaking leads to a transient increase of the photoluminescence efficiency at excitation wavelengths longer than 520 nm, whereas light-induced degradation occurs when exciting the films with wavelengths shorter than 520 nm. X-ray diffraction and extinction measurements reveal the light-induced decomposition of CH3NH3PbI3 to lead iodide (PbI2) for the high-energy excitation regime. We propose a model explaining the energy dependence of the photostability that involves the photoexcitation of residual PbI2 species in the perovskite triggering the decomposition of CH3NH3PbI3.

16.
Rev Sci Instrum ; 78(12): 123903, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18163736

RESUMO

One key requirement for the production of multinary oxide films by chemical vapor deposition (CVD) or nanocrystalline multinary oxides particles by chemical vapor synthesis (CVS) is the availability of precursors with high vapor pressure. This is especially the case for CVS where much higher production rates are required compared to thin films prepared by CVD. However, elements, which form low valent cations such as alkaline earth metals, are typically only available as solid precursors of low volatility, e.g., in form of beta-diketonates. This study describes laser flash evaporation as precursor delivery method for CVS of nanocrystalline perovskites. Laser flash evaporation exploits the nonequilibrium evaporation of solid metal organic precursors of low vapor pressure by absorption of the infrared radiation of a CO(2) laser. It is shown that stoichiometric, nanocrystalline particles consisting of SrZrO(3) and SrTiO(3) can be formed from corresponding mixtures of beta-diketonates which are evaporated nonselectively and with high rates by laser flash evaporation.

17.
ChemSusChem ; 10(21): 4190-4197, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-28892268

RESUMO

Chemical vapor synthesis (CVS) is a unique method to prepare well-defined photocatalyst materials with both large specific surface area and a high degree of crystallinity. The obtained ß-Ga2 O3 nanoparticles were optimized for photocatalysis by reductive photodeposition of the Rh/CrOx co-catalyst system. The influence of the degree of crystallinity and the specific surface area on photocatalytic aqueous methanol reforming and overall water splitting (OWS) was investigated by synthesizing ß-Ga2 O3 samples in the temperature range from 1000 °C to 1500 °C. With increasing temperature, the specific surface area and the microstrain were found to decrease, whereas the degree of crystallinity and the crystallite size increased. Whereas the photocatalyst with the highest specific surface area showed the highest aqueous methanol reforming activity, the highest OWS activity was that for the sample with an optimum ratio between high degree of crystallinity and specific surface area. Thus, it was possible to show that the facile aqueous methanol reforming and the demanding OWS have different requirements for high photocatalytic activity.

19.
Ultramicroscopy ; 129: 30-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23545434

RESUMO

For conventional samples and measurement geometries the spatial resolution of energy dispersive X-ray spectroscopy is limited by a tear drop shaped emission volume to about 1 µm. This restriction can be substantially improved using thin samples and high acceleration voltage. In this contribution the spatial resolution of energy dispersive X-ray spectroscopy in a scanning electron microscope using thin lamella samples is investigated. At an acceleration voltage of 30 kV, an edge resolution down to Δdedge = 40 ± 10 nm is observed performing linescans across an interface, using an 80 nm thin sample prepared from a GaAs/AlAs-heterostructure. Furthermore, Monte-Carlo simulations of pure elements ranging from sodium to mercury are performed for different sample thicknesses. From the simulations we can derive a simple empirical formula to predict the spatial resolution as a function of sample thickness.

20.
Rev Sci Instrum ; 83(11): 114904, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23206086

RESUMO

One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA