Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 105(12): 4132-4137, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34110229

RESUMO

The ectoparasitic nematode Xiphinema index transmits grapevine fanleaf virus (GFLV) during feeding on grapevine roots, causing fanleaf degeneration in the plant. Hence, resistance breeding is a key to develop novel rootstocks to overcome such threats. In past years, various grapevine species were screened, and a few candidates with partial resistance were identified. However, they were hardly sufficient for viticulture because of their many agronomical defects. To develop reliably resistant rootstocks applicable in viticulture, multiple Vitis spp. genotypes were analyzed using root inoculation with nematodes in glass vials as an early and easy evaluation test. Resistance levels were evaluated 35 days after inoculation based on nematode reproduction factors, focusing on juveniles and eggs. Infection of grapevines with GFLV was analyzed after inoculation with viruliferous X. index. With this fast screening system, putative candidates with resistances against X. index have been identified for future breeding programs. Particularly, genotypes with the genetic background of Vitis aestivalis and Vitis labrusca were found to be nematode-resistant.


Assuntos
Nematoides , Vitis , Animais , Patrimônio Genético , Genótipo , Doenças das Plantas/genética
2.
Plant Dis ; 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823613

RESUMO

Flavescence dorée (FD) and Bois noir (BN) are the principal grapevine yellows diseases in Europe caused by distinct phytoplasmas: FD by 16SrV phytoplasmas (FDp), BN by Candidatus Phytoplasma solani. FDp is spread epidemically by the introduced Nearctic Deltocephalinae Scaphoideus titanus and is listed as a quarantine pest in the European Union (Regulation (EU) 2019/2072). Black Alder (Alnus glutinosa) is a common asymptotic host of 16SrV phytoplasmas in Europe and considered the original host of FDp (Malembic-Maher et al. 2020). Palatinate grapevine yellows (PGY) transmitted from alder to grapevine by the Macropsinae Oncopsis alni (Maixner et al. 2000) is not transmissible by S. titanus, unlike isolates transmitted by the autochthonous Deltocephalinae Allygus spp. and the invasive Orientus ishidae (Malembic-Maher et al. 2020). Germany is considered free from FD in grapevine and from its vector. A single case in a nursery in 2014 was eradicated (EPPO 2017). Since S. titanus was detected in 2016 in the neighboring French Region of Alsace, monitoring of FD was carried out in Germany. It was focused on vineyards within a distance of 100 m from stands of alder trees. A geodata-based risk map (Jalke 2020) was used to identify those plots. All symptomatic vines sampled until September 2020 proved to be infected by BN or, occasionally, by PGY. Eight vines with typical symptoms were sampled in vineyards adjacent to alder stands in the winegrowing region of Rheinhessen in September 2020. Symptoms comprised leaf rolling and discoloration, incomplete lignification, black pustules on shoots, dried inflorescences and shriveled berries. Diseased shoots were black and necrotic in December. Leaf midribs were sampled for total DNA extraction. The phytoplasma 16S rRNA gene was amplified by generic primers R16F2/R2-mod followed by a nested PCR using 16Sr(V) group-specific primers R16(V)F1/R1, and primers R16(I)F1/R1 (Lee et al. 1995) to detect 'Candidatus Phytoplasma solani', associated with BN. While BN was detected in seven vines, one sample tested positive for 16SrV phytoplasma. This result was confirmed by triplex real-time Taq-Man assay based on rpl14 gene sequences (IPADLAB), by multiplex real-time PCR of map locus as well as by Loop-mediated isothermal amplification (LAMP) according to the EPPO diagnostic standard PM 7/079(2) (EPPO 2016). PCR-products of the map- and the vmpA-Gene (Malembic-Maher et al., 2020) were sequenced and compared to reference sequences to distinguish between FD- and non-FD genotypes. The isolate from the diseased vine exhibited 100% identity with map-M38 (Accession No. LT221933), a genotype of the map-FD2 cluster. The same genotype was detected in A. glutinosa and Allygus spp. sampled at the infested site. A 234 bp sequence of the first repeat of the vmpA-gene showed 100% identity with the S. titanus transmitted isolate FD-92 (Accession No. LN680870) of the vmpA-II cluster. It can be concluded, that the 16SrV-isolate detected in a symptomatic grapevine is infected by FD and not PGY. This is the first report of FD in a vineyard in Germany. The infected vine of cv. Silvaner was 25 years old. While infected planting material is an unlikely source of the infection, a transmission of FDp from alder is highly probable. Finding a single FD-infection after several years of testing implies a low risk originating from the wild compartment, but the approach of the vector S. titanus justifies further monitoring activities. The infected vine was eradicated.

3.
Genome ; 59(5): 319-25, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27093244

RESUMO

Within a polyembryonic mango seedling tree population, the genetic background of individuals should be identical because vigorous plants for cultivation are expected to develop from nucellar embryos representing maternal clones. Due to the fact that the mango cultivar 'Hôi' is assigned to the polyembryonic ecotype, an intra-cultivar variability of ethylene receptor genes was unexpected. Ethylene receptors in plants are conserved, but the number of receptors or receptor isoforms is variable regarding different plant species. However, it is shown here that the ethylene receptor MiETR1 is present in various isoforms within the mango cultivar 'Hôi'. The investigation of single nucleotide polymorphisms revealed that different MiETR1 isoforms can not be discriminated simply by individual single nucleotide exchanges but by the specific arrangement of single nucleotide polymorphisms at certain positions in the exons of MiETR1. Furthermore, an MiETR1 isoform devoid of introns in the genomic sequence was identified. The investigation demonstrates some limitations of high resolution melting and ScreenClust analysis and points out the necessity of sequencing to identify individual isoforms and to determine the variability within the tree population.


Assuntos
Mangifera/genética , Árvores/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Heterogeneidade Genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas , Receptores de Superfície Celular/genética , Plântula/genética , Alinhamento de Sequência , Análise de Sequência de DNA
4.
Planta ; 231(5): 1037-47, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20145949

RESUMO

Vitis vinifera (grapevine) is the most economically important deciduous fruit crop, but cultivated grapevine varieties lack adequate innate immunity to a range of devastating diseases. To identify genetic resources for grapevine innate immunity and understand pathogen defense pathways in a woody perennial plant, we focus in this study on orthologs of the central Arabidopsis thaliana defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). The family of EDS1-like genes is expanded in grapevine, and members of this family were previously found to be constitutively upregulated in the resistant variety 'Norton' of the North American grapevine species Vitis aestivalis, while they were induced by Erysiphe necator, the causal agent of grapevine powdery mildew (PM), in the susceptible V. vinifera variety 'Cabernet Sauvignon'. Here, we determine the responsiveness of individual EDS1-like genes in grapevine to PM and salicylic acid, and find that EDS1-like paralogs are differentially regulated in 'Cabernet Sauvignon', while two are constitutively upregulated in 'Norton'. Sequencing of VvEDS1 and VaEDS1 cDNA and genomic clones revealed high conservation in the protein-encoding sequence and some divergence of the promoter sequence in the two grapevine varieties. Complementation of the Arabidopsis eds1-1 mutant showed that the EDS1-like gene with highest predicted amino acid sequence similarity to AtEDS1 from either grapevine varieties is a functional ortholog of AtEDS1. Together, our analyses show that differential susceptibility to PM is correlated with differences in EDS1 expression, not differences in EDS1 function, between resistant 'Norton' and susceptible 'Cabernet Sauvignon'.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/genética , Ascomicetos/fisiologia , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Vitis/microbiologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/efeitos dos fármacos , DNA Complementar/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Genoma de Planta/genética , Imunidade Inata/efeitos dos fármacos , Dados de Sequência Molecular , Mutação/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Salicílico/farmacologia , Homologia de Sequência de Aminoácidos , Vitis/efeitos dos fármacos , Vitis/genética , Vitis/imunologia
5.
Plant Sci ; 289: 110269, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31623779

RESUMO

Ethylene is a key element of plant physiology, thus ethylene research is important for both, fundamental research and agriculture. Previous work on ethylene receptors focused on expression level and protein interaction, but knowledge on regulation of gene transcription is scarce. Promoters of mango ethylene receptor genes (pMiERS1a, pMiERS1b) were analysed particularly regarding responsiveness to hormones. The promoter sequences reveal some variation and they were characterized by identifying functional regulatory candidate modules via truncated-promoter approach. Based on ectopic gene expression studies in transgenic Arabidopsis and Nicotiana it is demonstrated that both promoters are positively responsive to ethylene. For pMiERS1a the AHBP/DOFF1 module is linked to ethylene responsiveness, while for pMiERS1b it is the module MYBL/OPAQ1. A negative gene regulation in response to abscisic acid (ABA) is linked to MYBL/DOFF2. A positive response to indole-3-acetic acid (IAA) was found for GTBX/MYCL1, containing the motifs IBOX/IDDF/TEFB, which are present in this combination only in pMiERS1b, but not in pMiERS1a. Conclusively, the general response of the ethylene receptor genes is conserved, but similar regulation can be linked to different modules. Further, a minor variation in a transcription factor binding site (TFBS) motif within an overall conserved module type can lead to a different expression.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mangifera/genética , Nicotiana/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Arabidopsis/metabolismo , Etilenos/metabolismo , Mangifera/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Receptores de Superfície Celular/metabolismo , Nicotiana/metabolismo
6.
Plant Sci ; 246: 26-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26993233

RESUMO

Different versions of the mango ethylene receptor MiERS1 were identified and the analysis indicates that, in addition to MiERS1, two short versions of this receptor (MiERS1m, MiERS1s), representing truncated proteins with central deletions of functional domains, are present in mango. The short receptor versions reveal a different expression pattern compared to MiERS1, and they are highly variably transcribed. With transient expression assays using fluorescent fusion proteins, the localisation and the interaction of the receptors were determined in leaf cells of the tobacco model. MiERS1, MiETR1, and the short MiERS1 receptor versions are anchored in the endoplasmic reticulum (ER) membrane and co-localise with each other and with an ER-marker. Furthermore, ectopic expression of the mango receptors appears to induce a re-organisation of the ER resulting in accumulation of ER bodies. Interaction assays suggest that both short MiERS1 receptor versions can bind to proteins located in the ER. Bi-molecular fluorescence complementation (BiFC) assays indicate, that MiERS1m may dimerise with itself and can also interact with MiERS1, but not with MiETR1. Further, it as found that MiETR1 can interact with MiERS1. Interaction of MiERS1s with the other ethylene receptors could not be detected, although it was located in the ER membrane system.


Assuntos
Mangifera/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Fluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mangifera/genética , Células Vegetais/metabolismo , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Ligação Proteica , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Nicotiana/genética
7.
Sci Rep ; 6: 30825, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488171

RESUMO

Tissue colonization by grape powdery mildew (PM) pathogen Erysiphe necator (Schw.) Burr triggers a major remodeling of the transcriptome in the susceptible grapevine Vitis vinifera L. While changes in the expression of many genes bear the signature of salicylic acid (SA) mediated regulation, the breadth of PM-induced changes suggests the involvement of additional regulatory networks. To explore PM-associated gene regulation mediated by other SA-independent systems, we designed a microarray experiment to distinguish between transcriptome changes induced by E. necator colonization and those triggered by elevated SA levels. We found that the majority of genes responded to both SA and PM, but certain genes were responsive to PM infection alone. Among them, we identified genes of stilbene synthases, PR-10 proteins, and several transcription factors. The microarray results demonstrated that the regulation of these genes is either independent of SA, or dependent, but SA alone is insufficient to bring about their regulation. We inserted the promoter-reporter fusion of a PM-responsive transcription factor gene into a wild-type and two SA-signaling deficient Arabidopsis lines and challenged the resulting transgenic plants with an Arabidopsis-adapted PM pathogen. Our results provide experimental evidence that this grape gene promoter is activated by the pathogen in a SA-independent manner.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , Vitis/genética , Vitis/microbiologia , Aciltransferases/genética , Parede Celular/fisiologia , Genes de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Transcriptoma/genética
8.
Front Plant Sci ; 6: 706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442021

RESUMO

Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets.

9.
Plant Physiol Biochem ; 71: 184-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23954797

RESUMO

Longan (Dimocarpus longan Lour.) is a subtropical evergreen fruit tree, mainly cultivated in Asia. Two putative floral integrator genes, D. longan FLOWERING LOCUS T1 and 2 (DlFT1 and DlFT2) were isolated and both translated sequences revealed a high homology to FT sequences from other plants. Moreover, two APETALA1-like (DlAP1-1 and DlAP1-2) sequences from longan were isolated and characterized. Results indicate that the sequences of these genes are highly conserved, suggesting functions in the longan flowering pathway. Ectopic expression of the longan genes in arabidopsis resulted in different flowering time phenotypes of transgenic plants. Expression experiments reveal a different action of the longan FT genes and indicate that DlFT1 is a flowering promoter, while DlFT2 acts as flowering inhibitor. Overexpression of longan AP1 genes in transgenic arabidopsis results in a range of flowering time phenotypes also including early and late flowering individuals.


Assuntos
Frutas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sapindaceae/metabolismo , Árvores/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Árvores/genética
10.
Plant Physiol Biochem ; 47(8): 739-42, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19419883

RESUMO

RNA interference (RNAi) was established in Nicotiana benthamiana plants by introducing constructs containing a defective interfering (DI) sequence from Tomato bushy stunt virus (TBSV) in combination with a conserved sense-sequence from the target Grapevine fanleaf virus (GFLV). Silencing in plants was confirmed by Agrobacterium-mediated infiltration of a GFP-sensor containing the GFLV-derived target sequence. The transgene-induced RNAi led to silencing of the GFP-sensor and GFP fluorescence was absent post-infiltration. In plants without GFP fluorescence after infiltration with the GFP-sensor, siRNA specific to GFP and the target virus sequence could not be detected. In contrast, infiltrated leaves of wild type and transgenic plants showing GFP fluorescence after infiltration revealed accumulation of siRNA specific to the sequence of the sensor. Silencing could be inhibited by co-infiltration using a p19 silencing suppressor construct together with the GFP-sensor, which always resulted in bright GFP fluorescence. In parallel, virus resistance of transgenic Nicotiana benthamiana was investigated via challenge inoculation with GFLV. Our results indicate that efficient RNAi in transgenic plants does not necessarily lead to a detectable accumulation of siRNA.


Assuntos
Inativação Gênica , Nicotiana/genética , Doenças das Plantas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Tombusvirus/genética , Vírus Defeituosos/genética , Proteínas de Fluorescência Verde , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , Nicotiana/virologia , Tombusvirus/patogenicidade , Proteínas Virais/genética , Vírus/genética , Vírus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA