Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 38(11): 2656-2670, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29431651

RESUMO

Many sensory neural circuits exhibit response normalization, which occurs when the response of a neuron to a combination of multiple stimuli is less than the sum of the responses to the individual stimuli presented alone. In the visual cortex, normalization takes the forms of cross-orientation suppression and surround suppression. At the onset of visual experience, visual circuits are partially developed and exhibit some mature features such as orientation selectivity, but it is unknown whether cross-orientation suppression is present at the onset of visual experience or requires visual experience for its emergence. We characterized the development of normalization and its dependence on visual experience in female ferrets. Visual experience was varied across the following three conditions: typical rearing, dark rearing, and dark rearing with daily exposure to simple sinusoidal gratings (14-16 h total). Cross-orientation suppression and surround suppression were noted in the earliest observations, and did not vary considerably with experience. We also observed evidence of continued maturation of receptive field properties in the second month of visual experience: substantial length summation was observed only in the oldest animals (postnatal day 90); evoked firing rates were greatly increased in older animals; and direction selectivity required experience, but declined slightly in older animals. These results constrain the space of possible circuit implementations of these features.SIGNIFICANCE STATEMENT The development of the brain depends on both nature-factors that are independent of the experience of an individual animal-and nurture-factors that depend on experience. While orientation selectivity, one of the major response properties of neurons in visual cortex, is already present at the onset of visual experience, it is unknown whether response properties that depend on interactions among multiple stimuli develop without experience. We find that the properties of cross-orientation suppression and surround suppression are present at eye opening, and do not depend on visual experience. Our results are consistent with the idea that a majority of the basic properties of sensory neurons in primary visual cortex are derived independent of the experience of an individual animal.


Assuntos
Furões/fisiologia , Aprendizagem/fisiologia , Orientação Espacial/fisiologia , Percepção de Tamanho/fisiologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Sensibilidades de Contraste , Escuridão , Eletrodos Implantados , Potenciais Evocados Visuais/fisiologia , Feminino , Estimulação Luminosa , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Campos Visuais/fisiologia
2.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653560

RESUMO

Forebrain neurons deprived of activity become hyperactive when activity is restored. Rebound activity has been linked to spontaneous seizures in vivo following prolonged activity blockade. Here, we measured the time course of rebound activity and the contributing circuit mechanisms using calcium imaging, synaptic staining, and whole-cell patch clamp in organotypic slice cultures of mouse neocortex. Calcium imaging revealed hypersynchronous activity increasing in intensity with longer periods of deprivation. While activity partially recovered 3 d after slices were released from 5 d of deprivation, they were less able to recover after 10 d of deprivation. However, even after the longer period of deprivation, activity patterns eventually returned to baseline levels. The degree of deprivation-induced rebound was age-dependent, with the greatest effects occurring when silencing began in the second week. Pharmacological blockade of NMDA receptors indicated that hypersynchronous rebound activity did not require activation of Hebbian plasticity. In single-neuron recordings, input resistance roughly doubled with a concomitant increase in intrinsic excitability. Synaptic imaging of pre- and postsynaptic proteins revealed dramatic reductions in the number of presumptive synapses with a larger effect on inhibitory than excitatory synapses. Putative excitatory synapses colocalizing PSD-95 and Bassoon declined by 39 and 56% following 5 and 10 d of deprivation, but presumptive inhibitory synapses colocalizing gephyrin and VGAT declined by 55 and 73%, respectively. The results suggest that with prolonged deprivation, a progressive reduction in synapse number is accompanied by a shift in the balance between excitation and inhibition and increased cellular excitability.


Assuntos
Proteína 4 Homóloga a Disks-Large , Neocórtex , Animais , Neocórtex/fisiologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios/fisiologia , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Sinapses/fisiologia , Técnicas de Patch-Clamp , Camundongos , Camundongos Endogâmicos C57BL , Feminino , Cálcio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Fatores de Tempo , Proteínas do Tecido Nervoso
3.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777611

RESUMO

Homeostatic plasticity stabilizes firing rates of neurons, but the pressure to restore low activity rates can significantly alter synaptic and cellular properties. Most previous studies of homeostatic readjustment to complete activity silencing in rodent forebrain have examined changes after 2 d of deprivation, but it is known that longer periods of deprivation can produce adverse effects. To better understand the mechanisms underlying these effects and to address how presynaptic as well as postsynaptic compartments change during homeostatic plasticity, we subjected mouse cortical slice cultures to a more severe 5 d deprivation paradigm. We developed and validated a computational framework to measure the number and morphology of presynaptic and postsynaptic compartments from super-resolution light microscopy images of dense cortical tissue. Using these tools, combined with electrophysiological miniature excitatory postsynaptic current measurements, and synaptic imaging at the electron microscopy level, we assessed the functional and morphological results of prolonged deprivation. Excitatory synapses were strengthened both presynaptically and postsynaptically. Surprisingly, we also observed a decrement in the density of excitatory synapses, both as measured from colocalized staining of pre- and postsynaptic proteins in tissue and from the number of dendritic spines. Overall, our results suggest that cortical networks deprived of activity progressively move toward a smaller population of stronger synapses.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Neocórtex , Plasticidade Neuronal , Sinapses , Animais , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Neocórtex/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos Endogâmicos C57BL , Privação Sensorial/fisiologia , Masculino , Camundongos , Feminino , Espinhas Dendríticas/fisiologia
4.
Elife ; 122023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749029

RESUMO

Healthy neuronal networks rely on homeostatic plasticity to maintain stable firing rates despite changing synaptic drive. These mechanisms, however, can themselves be destabilizing if activated inappropriately or excessively. For example, prolonged activity deprivation can lead to rebound hyperactivity and seizures. While many forms of homeostasis have been described, whether and how the magnitude of homeostatic plasticity is constrained remains unknown. Here, we uncover negative regulation of cortical network homeostasis by the PARbZIP family of transcription factors. In cortical slice cultures made from knockout mice lacking all three of these factors, the network response to prolonged activity withdrawal measured with calcium imaging is much stronger, while baseline activity is unchanged. Whole-cell recordings reveal an exaggerated increase in the frequency of miniature excitatory synaptic currents reflecting enhanced upregulation of recurrent excitatory synaptic transmission. Genetic analyses reveal that two of the factors, Hlf and Tef, are critical for constraining plasticity and for preventing life-threatening seizures. These data indicate that transcriptional activation is not only required for many forms of homeostatic plasticity but is also involved in restraint of the response to activity deprivation.


The human brain is made up of billions of nerve cells called neurons which receive and send signals to one another. To avoid being over- or under-stimulated, neurons can adjust the strength of the inputs they receive by altering how connected they are to other nerve cells. This process, known as homeostatic plasticity, is thought to be necessary for normal brain activity as it helps keep the outgoing signals of neurons relatively constant. However, homeostatic plasticity can lead to seizures if it becomes too strong and overcompensates for weak input signals. Regulating this process is therefore central to brain health, but scientists do not understand if or how it is controlled. To address this, Valakh et al. analyzed the genes activated in neurons lacking incoming signals to find proteins that regulate homeostatic plasticity. This revealed a class of molecules called transcription factors (which switch genes on or off) that constrain the process. In brain samples from mice without these regulatory proteins, neurons received twice as much input, leading to an increase in brain activity resembling that observed during seizures. Valakh et al. confirmed this finding using live mice, which developed seizures in the absence of these transcription factors. These findings suggest that this type of regulation to keep homeostatic plasticity from becoming too strong may be important. This could be especially vital as the brain develops, when the strength of connections between neurons changes rapidly. The discovery of the transcription factors involved provides a potential target for activating or restraining homeostatic plasticity. This control could help researchers better understand how the process stabilizes brain signaling.


Assuntos
Neocórtex , Plasticidade Neuronal , Camundongos , Animais , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Homeostase/fisiologia , Camundongos Knockout , Convulsões/genética , Sinapses/fisiologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA