Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Bioconjug Chem ; 30(5): 1331-1342, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30973715

RESUMO

Poly(ADP ribose) polymerase (PARP) enzymes generate poly(ADP ribose) post-translational modifications on target proteins for an array of functions centering on DNA and cell stress. PARP isoforms 1 and 2 are critically charged with the surveillance of DNA integrity and are the first line guardians of the genome against DNA breaks. Here we present a novel probe ([18F]-SuPAR) for noninvasive imaging of PARP-1/2 activity using positron emission tomography (PET). [18F]-SuPAR is a radiofluorinated nicotinamide adenine dinucleotide (NAD) analog that can be recognized by PARP-1/2 and incorporated into the long branched polymers of poly(ADP ribose) (PAR). The measurement of PARP-1/2 activity was supported by a reduction of radiotracer uptake in vivo following PARP-1/2 inhibition with talazoparib treatment, a potent PARP inhibitor recently approved by FDA for treatment of breast cancer, as well as ex vivo colocalization of radiotracer analog and poly(ADP ribose). With [18F]-SuPAR, we were able to map the dose- and time-dependent activation of PARP-1/2 following radiation therapy in breast and cervical cancer xenograft mouse models. Tumor response to therapy was determined by [18F]-SuPAR PET within 8 h of administration of a single dose of radiation equivalent to one round of stereotactic ablative radiotherapy.


Assuntos
Dano ao DNA , Radioisótopos de Flúor/administração & dosagem , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , NAD/metabolismo , Tomografia por Emissão de Pósitrons , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Especificidade por Substrato , Neoplasias do Colo do Útero/diagnóstico por imagem , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Chemistry ; 25(9): 2345-2351, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30521138

RESUMO

Aldehyde dehydrogenases (ALDHs) catalyze the oxidation of aldehydes to carboxylic acids. Elevated ALDH expression in human cancers is linked to metastases and poor overall survival. Despite ALDH being a poor prognostic factor, the non-invasive assessment of ALDH activity in vivo has not been possible due to a lack of sensitive and translational imaging agents. Presented in this report are the synthesis and biological evaluation of ALDH1A1-selective chemical probes composed of an aromatic aldehyde derived from N,N-diethylamino benzaldehyde (DEAB) linked to a fluorinated pyridine ring either via an amide or amine linkage. Of the focused library of compounds evaluated, N-ethyl-6-(fluoro)-N-(4-formylbenzyl)nicotinamide 4 b was found to have excellent affinity and isozyme selectivity for ALDH1A1 in vitro. Following 18 F-fluorination, [18 F]4 b was taken up by colorectal tumor cells and trapped through the conversion to its 18 F-labeled carboxylate product under the action of ALDH. In vivo positron emission tomography revealed high uptake of [18 F]4 b in the lungs and liver, with radioactivity cleared through the urinary tract. Oxidation of [18 F]4 b, however, was observed in vivo, which may limit the tissue penetration of this first-in-class radiotracer.


Assuntos
Aldeído Desidrogenase/metabolismo , Animais , Biocatálise , Ativação Enzimática , Radioisótopos de Flúor/urina , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Oxirredução , Tomografia por Emissão de Pósitrons , Especificidade por Substrato
3.
J Neuroinflammation ; 15(1): 55, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29471880

RESUMO

BACKGROUND: The cystine/glutamate antiporter (xc-) has been implicated in several neurological disorders and, specifically, in multiple sclerosis (MS) as a mediator of glutamate excitotoxicity and proinflammatory immune responses. We aimed to evaluate an xc-specific positron emission tomography (PET) radiotracer, (4S)-4-(3-[18F]fluoropropyl)-L-glutamate ([18F]FSPG), for its ability to allow non-invasive monitoring of xc- activity in a mouse model of MS. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by subcutaneous injection of myelin oligodendrocyte glycoprotein (MOG35-55) peptide in complete Freund's adjuvant (CFA) followed by pertussis toxin. Control mice received CFA emulsion and pertussis toxin without MOG peptide, while a separate cohort of naïve mice received no treatment. PET studies were performed to investigate the kinetics and distribution of [18F]FSPG in naïve, control, pre-symptomatic, and symptomatic EAE mice, compared to 18F-fluorodeoxyglucose ([18F]FDG). After final PET scans, each mouse was perfused and radioactivity in dissected tissues was measured using a gamma counter. Central nervous system (CNS) tissues were further analyzed using ex vivo autoradiography or western blot. [18F]FSPG uptake in human monocytes, and T cells pre- and post-activation was investigated in vitro. RESULTS: [18F]FSPG was found to be more sensitive than [18F]FDG at detecting pathological changes in the spinal cord and brain of EAE mice. Even before clinical signs of disease, a small but significant increase in [18F]FSPG signal was observed in the spinal cord of EAE mice compared to controls. This increase in PET signal became more pronounced in symptomatic EAE mice and was confirmed by ex vivo biodistribution and autoradiography. Likewise, in the brain of symptomatic EAE mice, [18F]FSPG uptake was significantly higher than controls, with the largest changes observed in the cerebellum. Western blot analyses of CNS tissues revealed a significant correlation between light chain of xc- (xCT) protein levels, the subunit of xc- credited with its transporter activity, and [18F]FSPG-PET signal. In vitro [18F]FSPG uptake studies suggest that both activated monocytes and T cells contribute to the observed in vivo PET signal. CONCLUSION: These data highlight the promise of [18F]FSPG-PET as a technique to provide insights into neuroimmune interactions in MS and the in vivo role of xc- in the development and progression of this disease, thus warranting further investigation.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/metabolismo , Radioisótopos de Flúor/metabolismo , Glutamatos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Células Cultivadas , Fluordesoxiglucose F18/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo
4.
J Neurooncol ; 126(2): 253-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26650066

RESUMO

Glioblastoma multiforme (GBM) is an aggressive, malignant cancer Johnson and O'Neill (J Neurooncol 107: 359-364, 2012). An extract from the winter cherry plant (Withania somnifera ), AshwaMAX, is concentrated (4.3 %) for Withaferin A; a steroidal lactone that inhibits cancer cells Vanden Berghe et al. (Cancer Epidemiol Biomark Prev 23: 1985-1996, 2014). We hypothesized that AshwaMAX could treat GBM and that bioluminescence imaging (BLI) could track oral therapy in orthotopic murine models of glioblastoma. Human parietal-cortical glioblastoma cells (GBM2, GBM39) were isolated from primary tumors while U87-MG was obtained commercially. GBM2 was transduced with lentiviral vectors that express Green Fluorescent Protein (GFP)/firefly luciferase fusion proteins. Mutational, expression and proliferative status of GBMs were studied. Intracranial xenografts of glioblastomas were grown in the right frontal regions of female, nude mice (n = 3-5 per experiment). Tumor growth was followed through BLI. Neurosphere cultures (U87-MG, GBM2 and GBM39) were inhibited by AshwaMAX at IC50 of 1.4, 0.19 and 0.22 µM equivalent respectively and by Withaferin A with IC50 of 0.31, 0.28 and 0.25 µM respectively. Oral gavage, every other day, of AshwaMAX (40 mg/kg per day) significantly reduced bioluminescence signal (n = 3 mice, p < 0.02, four parameter non-linear regression analysis) in preclinical models. After 30 days of treatment, bioluminescent signal increased suggesting onset of resistance. BLI signal for control, vehicle-treated mice increased and then plateaued. Bioluminescent imaging revealed diffuse growth of GBM2 xenografts. With AshwaMAX, GBM neurospheres collapsed at nanomolar concentrations. Oral treatment studies on murine models confirmed that AshwaMAX is effective against orthotopic GBM. AshwaMAX is thus a promising candidate for future clinical translation in patients with GBM.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Withania/química , Vitanolídeos/administração & dosagem , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Receptores ErbB/metabolismo , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Medições Luminescentes , Camundongos , Camundongos Nus , Células-Tronco Neurais/efeitos dos fármacos , Extratos Vegetais/química , Vitanolídeos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Proc Natl Acad Sci U S A ; 109(33): 13374-9, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22837393

RESUMO

Acute kidney injury (AKI) is a common and important medical problem, affecting 10% of hospitalized patients, and it is associated with significant morbidity and mortality. The most frequent cause of AKI is acute tubular necrosis (ATN). Current imaging techniques and biomarkers do not allow ATN to be reliably differentiated from important differential diagnoses, such as acute glomerulonephritis (GN). We investigated whether (13)C magnetic resonance spectroscopic imaging (MRSI) might allow the noninvasive diagnosis of ATN. (13)C MRSI of hyperpolarized [1,4-(13)C(2)]fumarate and pyruvate was used in murine models of ATN and acute GN (NZM2410 mice with lupus nephritis). A significant increase in [1,4-(13)C(2)]malate signal was identified in the kidneys of mice with ATN early in the disease course before the onset of severe histological changes. No such increase in renal [1,4-(13)C(2)]malate was observed in mice with acute GN. The kidney [1-(13)C]pyruvate/[1-(13)C]lactate ratio showed substantial variability and was not significantly decreased in animals with ATN or increased in animals with GN. In conclusion, MRSI of hyperpolarized [1,4-(13)C(2)]fumarate allows the detection of early tubular necrosis and its distinction from glomerular inflammation in murine models. This technique may have the potential to identify a window of therapeutic opportunity in which emerging therapies might be applied to patients with ATN, reducing the need for acute dialysis with its attendant morbidity and cost.


Assuntos
Fumaratos , Necrose Tubular Aguda/diagnóstico , Imageamento por Ressonância Magnética/métodos , Animais , Isótopos de Carbono , Diagnóstico Precoce , Ácido Fólico , Humanos , Rim/anormalidades , Rim/patologia , Rim/fisiopatologia , Necrose Tubular Aguda/induzido quimicamente , Necrose Tubular Aguda/fisiopatologia , Cinética , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/patologia , Malatos , Camundongos , Camundongos Endogâmicos C57BL , Ácido Pirúvico
6.
Cancers (Basel) ; 16(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611114

RESUMO

BACKGROUND: (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG) positron emission tomography/computed tomography (PET/CT) provides a readout of system xc- transport activity and has been used for cancer detection in clinical studies of different cancer types. As system xc- provides the rate-limiting precursor for glutathione biosynthesis, an abundant antioxidant, [18F]FSPG imaging may additionally provide important prognostic information. Here, we performed an analysis of [18F]FSPG radiotracer distribution between primary tumors, metastases, and normal organs from cancer patients. We further assessed the heterogeneity of [18F]FSPG retention between cancer types, and between and within individuals. METHODS: This retrospective analysis of prospectively collected data compared [18F]FSPG PET/CT in subjects with head and neck squamous cell cancer (HNSCC, n = 5) and non-small-cell lung cancer (NSCLC, n = 10), scanned at different institutions. Using semi-automated regions of interest drawn around tumors and metastases, the maximum standardized uptake value (SUVmax), SUVmean, SUV standard deviation and SUVpeak were measured. [18F]FSPG time-activity curves (TACs) for normal organs, primary tumors and metastases were subsequently compared to 18F-2-fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT at 60 min post injection (p.i.). RESULTS: The mean administered activity of [18F]FSPG was 309.3 ± 9.1 MBq in subjects with NSCLC and 285.1 ± 11.3 MBq in those with HNSCC. The biodistribution of [18F]FSPG in both cohorts showed similar TACs in healthy organs from cancer patients. There was no statistically significant overall difference in the average SUVmax of tumor lesions at 60 min p.i. for NSCLC (8.1 ± 7.1) compared to HNSCC (6.0 ± 4.1; p = 0.29) for [18F]FSPG. However, there was heterogeneous retention between and within cancer types; the SUVmax at 60 min p.i. ranged from 1.4 to 23.7 in NSCLC and 3.1-12.1 in HNSCC. CONCLUSION: [18F]FSPG PET/CT imaging from both NSCLC and HNSCC cohorts showed the same normal-tissue biodistribution, but marked tumor heterogeneity across subjects and between lesions. Despite rapid elimination through the urinary tract and low normal-background tissue retention, the diagnostic potential of [18F]FSPG was limited by variability in tumor retention. As [18F]FSPG retention is mediated by the tumor's antioxidant capacity and response to oxidative stress, this heterogeneity may provide important insights into an individual tumor's response or resistance to therapy.

7.
Theranostics ; 14(6): 2464-2488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646648

RESUMO

Cancer has remained a formidable challenge in medicine and has claimed an enormous number of lives worldwide. Theranostics, combining diagnostic methods with personalized therapeutic approaches, shows huge potential to advance the battle against cancer. This review aims to provide an overview of theranostics in oncology: exploring its history, current advances, challenges, and prospects. We present the fundamental evolution of theranostics from radiotherapeutics, cellular therapeutics, and nanotherapeutics, showcasing critical milestones in the last decade. From the early concept of targeted drug delivery to the emergence of personalized medicine, theranostics has benefited from advances in imaging technologies, molecular biology, and nanomedicine. Furthermore, we emphasize pertinent illustrations showcasing that revolutionary strategies in cancer management enhance diagnostic accuracy and provide targeted therapies customized for individual patients, thereby facilitating the implementation of personalized medicine. Finally, we describe future perspectives on current challenges, emerging topics, and advances in the field.


Assuntos
Neoplasias , Medicina de Precisão , Nanomedicina Teranóstica , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico , Nanomedicina Teranóstica/métodos , Medicina de Precisão/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , História do Século XX , Animais , História do Século XXI
8.
Sci Transl Med ; 16(729): eadh1334, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198573

RESUMO

The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria.


Assuntos
Acidúria Argininossuccínica , Hepatopatias , Adulto , Humanos , Animais , Camundongos , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/terapia , Cisteína , Glutationa , Metabolômica
9.
Cancers (Basel) ; 15(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067277

RESUMO

System xc- is upregulated in cancer cells and can be imaged using novel radiotracers, most commonly with (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid (18F-FSPG). The aim of this review was to summarise the use of 18F-FSPG in humans, explore the benefits and limitations of 18F-FSPG, and assess the potential for further use of 18F-FSPG in cancer patients. To date, ten papers have described the use of 18F-FSPG in human cancers. These studies involved small numbers of patients (range 1-26) and assessed the use of 18F-FSPG as a general oncological diagnostic agent across different cancer types. These clinical trials were contrasting in their findings, limiting the scope of 18F-FSPG PET/CT as a purely diagnostic agent, primarily due to heterogeneity of 18F-FSPG retention both between cancer types and patients. Despite these limitations, a potential further application for 18F-FSPG is in the assessment of early treatment response and prediction of treatment resistance. Animal models of cancer have shown that changes in 18F-FSPG retention following effective therapy precede glycolytic changes, as indicated by 18F-FDG, and changes in tumour volume, as measured by CT. If these results could be replicated in human clinical trials, imaging with 18F-FSPG PET/CT would offer an exciting route towards addressing the currently unmet clinical needs of treatment resistance prediction and early imaging assessment of therapy response.

10.
Npj Imaging ; 1: 1, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38239706

RESUMO

Mouse models are invaluable tools for radiotracer development and validation. They are, however, expensive, low throughput, and are constrained by animal welfare considerations. Here, we assessed the chicken chorioallantoic membrane (CAM) as an alternative to mice for preclinical cancer imaging studies. NCI-H460 FLuc cells grown in Matrigel on the CAM formed vascularized tumors of reproducible size without compromising embryo viability. By designing a simple method for vessel cannulation it was possible to perform dynamic PET imaging in ovo, producing high tumor-to-background signal for both 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) and (4S)-4-(3-18F-fluoropropyl)-L-glutamate (18F-FSPG). The pattern of 18F-FDG tumor uptake were similar in ovo and in vivo, although tumor-associated radioactivity was higher in the CAM-grown tumors over the 60 min imaging time course. Additionally, 18F-FSPG provided an early marker of both treatment response to external beam radiotherapy and target inhibition in ovo. Overall, the CAM provided a low-cost alternative to tumor xenograft mouse models which may broaden access to PET and SPECT imaging and have utility across multiple applications.

11.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168428

RESUMO

Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. The cystine/glutamate antiporter, system xc-, is one of the >200 cytoprotective proteins controlled by NRF2, which can be non-invasively imaged by (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG) positron emission tomography (PET). Through genetic and pharmacologic manipulation, we show that [18F]FSPG provides a sensitive and specific marker of NRF2 activation in advanced preclinical models of NSCLC. We validate imaging readouts with metabolomic measurements of system xc- activity and their coupling to intracellular glutathione concentration. A redox gene signature was measured in patients from the TRACERx 421 cohort, suggesting an opportunity for patient stratification prior to imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted for sustained tumour growth suppression in aggressive NSCLC. Our results establish [18F]FSPG as predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.

12.
J Biol Chem ; 286(28): 24572-80, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21596745

RESUMO

Measurements of the kinetics of hyperpolarized (13)C label exchange between [1-(13)C]pyruvate and lactate in suspensions of intact and lysed murine lymphoma cells, and in cells in which lactate dehydrogenase expression had been modulated by inhibition of the PI3K pathway, were used to determine quantitatively the role of enzyme activity and membrane transport in controlling isotope flux. Both steps were shown to share in the control of isotope flux in these cells. The kinetics of label exchange were well described by a kinetic model that employed rate constants for the lactate dehydrogenase reaction that had been determined previously from steady state kinetic studies. The enzyme showed pyruvate inhibition in steady state kinetic measurements, which the kinetic model predicted should also be observed in the isotope exchange measurements. However, no such pyruvate inhibition was observed in either intact cells or cell lysates and this could be explained by the much higher enzyme concentrations present in the isotope exchange experiments. The kinetic analysis presented here shows how lactate dehydrogenase activity can be determined from the isotope exchange measurements. The kinetic model should be useful for modeling the exchange reaction in vivo, particularly as this technique progresses to the clinic.


Assuntos
Ácido Láctico/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Ácido Pirúvico/metabolismo , Isótopos de Carbono/química , Linhagem Celular Tumoral , Humanos , Cinética
13.
Proc Natl Acad Sci U S A ; 106(47): 19801-6, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19903889

RESUMO

Dynamic nuclear polarization of (13)C-labeled cell substrates has been shown to massively increase their sensitivity to detection in NMR experiments. The sensitivity gain is sufficiently large that if these polarized molecules are injected intravenously, their spatial distribution and subsequent conversion into other cell metabolites can be imaged. We have used this method to image the conversion of fumarate to malate in a murine lymphoma tumor in vivo after i.v. injection of hyperpolarized [1,4-(13)C(2)]fumarate. In isolated lymphoma cells, the rate of labeled malate production was unaffected by coadministration of succinate, which competes with fumarate for transport into the cell. There was, however, a correlation with the percentage of cells that had lost plasma membrane integrity, suggesting that the production of labeled malate from fumarate is a sensitive marker of cellular necrosis. Twenty-four hours after treating implanted lymphoma tumors with etoposide, at which point there were significant levels of tumor cell necrosis, there was a 2.4-fold increase in hyperpolarized [1,4-(13)C(2)]malate production compared with the untreated tumors. Therefore, the formation of hyperpolarized (13)C-labeled malate from [1,4-(13)C(2)]fumarate appears to be a sensitive marker of tumor cell death in vivo and could be used to detect the early response of tumors to treatment. Given that fumarate is an endogenous molecule, this technique has the potential to be used clinically.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Fumaratos , Malatos , Necrose/metabolismo , Neoplasias , Animais , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Etoposídeo/uso terapêutico , Feminino , Fumarato Hidratase/metabolismo , Fumaratos/química , Fumaratos/metabolismo , Linfoma/metabolismo , Linfoma/patologia , Malatos/química , Malatos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Necrose/patologia , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ressonância Magnética Nuclear Biomolecular , Extratos de Tecidos/metabolismo , Resultado do Tratamento
14.
RSC Chem Biol ; 3(5): 561-570, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35656483

RESUMO

Therapy resistance is one of the biggest challenges facing clinical oncology. Despite a revolution in new anti-cancer drugs targeting multiple components of the tumour microenvironment, acquired or innate resistance frequently blunts the efficacy of these treatments. Non-invasive identification of drug-resistant tumours will enable modification of the patient treatment pathway through the selection of appropriate second-line treatments. Here, we have designed a prodrug radiotracer for the non-invasive imaging of aldehyde dehydrogenase 1A1 (ALDH1A1) activity. Elevated ALDH1A1 activity is a marker of drug-resistant cancer cells, modelled here with matched cisplatin-sensitive and -resistant human SKOV3 ovarian cancer cells. The aromatic aldehyde of our prodrug radiotracer was intracellularly liberated by esterase cleavage of the geminal diacetate and specifically trapped by ALDH through its conversion to the charged carboxylic acid. Through this mechanism of action, ALDH-specific retention of our prodrug radiotracer in the drug-resistant tumour cells was twice as high as the drug-sensitive cells. Acylal masking of the aldehyde afforded a modest protection from oxidation in the blood, which was substantially improved in carrier-added experiments. In vivo positron emission tomography imaging of tumour-bearing mice produced high tumour-to-background images and radiotracer uptake in high ALDH-expressing organs but was unable to differentiate between drug-sensitive and drug-resistant tumours. Alternative strategies to protect the labile aldehyde are currently under investigation.

15.
Theranostics ; 12(4): 1921-1936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198080

RESUMO

Amino acid utilization is perturbed in cancer cells, which rewire their metabolism to support cell survival and proliferation. This metabolic reprogramming can be exploited for diagnostic purposes through positron emission tomography imaging of fluorine-18 labeled amino acids. Despite its promise, little is known regarding transporter-recognition of non-natural amino acid stereoisomers or their utility for cancer imaging. We report here the synthesis and in vivo characterization of a radiolabeled amino acid (R)-4-(3-18F-fluoropropyl)-ʟ-glutamate ([18F]FRPG) and compared its tumor imaging properties to the 4S-isomer, [18F]FSPG. Methods: [18F]FRPG and [18F]FSPG uptake was assessed in H460 lung cancer cells, with efflux measured 30 min after removal of exogenous activity. Specificity of [18F]FRPG for system xC- was further examined following transporter inhibition and blocking studies with system xC- substrates. [18F]FRPG and [18F]FSPG pharmacokinetics was next quantified in mice bearing subcutaneous A549, H460, VCAP and PC3 tumors, with mice bearing A549 tumors imaged by PET/CT. To better-understand differential tumor retention, radiometabolite analysis was performed on tissue and blood samples after imaging. Next, [18F]FRPG and [18F]FSPG retention in lipopolysaccharide-treated lungs were compared to an orthotopic H460 lung cancer model. Finally, the sensitivity of [18F]FRPG to manipulation of the redox environment was examined in cell and in vivo models. Results: [18F]FRPG was specifically transported across the plasma membrane by the cystine/glutamate antiporter system xC- and retained at high levels in multiple tumor models. Conversely, [18F]FRPG was rapidly extracted from the blood and cleared from tissues with low system xC- expression. Due to its favorable imaging properties, tumor-to-blood ratios ≥10 were achieved with [18F]FRPG, which were either equal to or greater than [18F]FSPG. In addition, [18F]FRPG retention in orthotopic lung tumors with high system xC- expression was 2.5-fold higher than inflamed tissue, allowing for clear tumor visualization. In vivo, [18F]FRPG and [18F]FSPG were metabolized to a single species, with [18F]FRPG showing a higher percentage of parent radiotracer in tumors compared to [18F]FSPG. [18F]FRPG was sensitive to redox manipulations and tumor retention was reduced following treatment with liposomal doxorubicin in mice bearing ovarian tumors. Conclusions: Given the fast clearance and low background retention of [18F]FRPG throughout the body, this radiotracer holds promise for the imaging of system xC- activity and treatment response monitoring in tumors of the thorax, abdomen, and head and neck. [18F]FRPG PET imaging provides a sensitive noninvasive measure of system xC- and excellent properties for cancer imaging.


Assuntos
Neoplasias Pulmonares , Neoplasias Ovarianas , Animais , Linhagem Celular Tumoral , Feminino , Ácido Glutâmico , Humanos , Cinética , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Neoplasias Ovarianas/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética
16.
J Nucl Med ; 62(11): 1506-1510, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34353871

RESUMO

Oxidative stress is the imbalance of harmful reactive oxygen species (ROS) and the action of neutralizing antioxidant mechanisms. If left unchecked, the deleterious effects of oxidative stress result in damage to DNA, proteins, and membranes, ultimately leading to cell death. Tumors are highly proliferative and consequently generate high levels of mitochondrial ROS. To compensate for this and maintain redox homeostasis, cancer cells upregulate protective antioxidant pathways, which are further amplified in drug-resistant tumors. This review provides an overview of the latest molecular imaging techniques designed to image oxidative stress in cancer. New probes can now assess heterogeneous ROS and antioxidant production within tumors and across lesions. Together, the noninvasive imaging of these dynamic processes holds great promise for monitoring response to treatment and predicting drug resistance and may provide insight into the metastatic potential of tumors.


Assuntos
Estresse Oxidativo , Humanos , Mitocôndrias , Neoplasias , Espécies Reativas de Oxigênio
17.
Cancer Imaging ; 21(1): 18, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516256

RESUMO

Nuclear medicine has evolved over the last half-century from a functional imaging modality using a handful of radiopharmaceuticals, many of unknown structure and mechanism of action, into a modern speciality that can properly be described as molecular imaging, with a very large number of specific radioactive probes of known structure that image specific molecular processes. The advances of cancer treatment in recent decades towards targeted and immune therapies, combined with recognition of heterogeneity of cancer cell phenotype among patients, within patients and even within tumours, has created a growing need for personalised molecular imaging to support treatment decision. This article describes the evolution of the present vast range of radioactive probes - radiopharmaceuticals - leveraging a wide variety of chemical disciplines, over the last half century. These radiochemical innovations have been inspired by the need to support personalised medicine and also by the parallel development in development of new radionuclide imaging technologies - from gamma scintigraphy, through single photon emission tomography (SPECT), through the rise of clinical positron emission tomography (PET) and PET-CT, and perhaps in the future, by the advent of total body PET. Thus, in the interdisciplinary world of nuclear medicine and molecular imaging, as quickly as radiochemistry solutions are developed to meet new needs in cancer imaging, new challenges emerge as developments in one contributing technology drive innovations in the others.


Assuntos
Imunoterapia/métodos , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Humanos
18.
Mol Imaging Biol ; 23(6): 854-864, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34013395

RESUMO

PURPOSE: (S)-4-(3-18F-Fluoropropyl)-ʟ-Glutamic Acid ([18F]FSPG) is a radiolabeled non-natural amino acid that is used for positron emission tomography (PET) imaging of the glutamate/cystine antiporter, system xC-, whose expression is upregulated in many cancer types. To increase the clinical adoption of this radiotracer, reliable and facile automated procedures for [18F]FSPG production are required. Here, we report a cassette-based method to produce [18F]FSPG at high radioactivity concentrations from low amounts of starting activity. PROCEDURES: An automated synthesis and purification of [18F]FSPG was developed using the GE FASTlab. Optimization of the reaction conditions and automated manipulations were performed by measuring the isolated radiochemical yield of [18F]FSPG and by assessing radiochemical purity using radio-HPLC. Purification of [18F]FSPG was conducted by trapping and washing of the radiotracer on Oasis MCX SPE cartridges, followed by a reverse elution of [18F]FSPG in phosphate-buffered saline. Subsequently, the [18F]FSPG obtained from the optimized process was used to image an animal model of non-small cell lung cancer. RESULTS: The optimized protocol produced [18F]FSPG in 38.4 ± 2.6 % radiochemical yield and >96 % radiochemical purity with a molar activity of 11.1 ± 7.7 GBq/µmol. Small alterations, including the implementation of a reverse elution and an altered Hypercarb cartridge, led to significant improvements in radiotracer concentration from <10 MBq/ml to >100 MBq/ml. The improved radiotracer concentration allowed for the imaging of up to 20 mice, starting with just 1.5 GBq of [18F]Fluoride. CONCLUSIONS: We have developed a robust and facile method for [18F]FSPG radiosynthesis in high radiotracer concentration, radiochemical yield, and radiochemical purity. This cassette-based method enabled the production of [18F]FSPG at radioactive concentrations sufficient to facilitate large-scale preclinical experiments with a single prep of starting activity. The use of a cassette-based radiosynthesis on an automated synthesis module routinely used for clinical production makes the method amenable to rapid and widespread clinical translation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Fluoretos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos
19.
Magn Reson Med ; 63(4): 872-80, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20373388

RESUMO

Measurements of the conversion of hyperpolarized [1-(13)C]pyruvate into lactate, in the reaction catalyzed by lactate dehydrogenase, have shown promise as a metabolic marker for the presence of disease and response to treatment. However, it is unclear whether this represents net flux of label from pyruvate to lactate or exchange of isotope between metabolites that are close to chemical equilibrium. Using saturation and inversion transfer experiments, we show that there is significant exchange of label between lactate and pyruvate in a murine lymphoma in vivo. The rate constants estimated from the magnetization transfer experiments, at specific points during the time course of label exchange, were similar to those obtained by fitting the changes in peak intensities during the entire exchange time course to a kinetic model for two-site exchange. These magnetization transfer experiments may therefore provide an alternative and more rapid way of estimating flux between pyruvate and lactate to serial measurements of pyruvate and lactate (13)C peak intensities following injection of hyperpolarized [1-(13)C]pyruvate.


Assuntos
Lactatos/metabolismo , Linfoma/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Piruvatos/metabolismo , Animais , Isótopos de Carbono/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL
20.
Biochem Soc Trans ; 38(5): 1220-4, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20863288

RESUMO

Patients with similar tumour types frequently show different responses to the same therapy. The development of new treatments would benefit, therefore, from imaging methods that allow an early assessment of treatment response in individual patients, allowing rapid selection of the most effective treatment. We have been using (13)C MRSI (magnetic resonance spectroscopic imaging) of tumour cell metabolism, using hyperpolarized (13)C-labelled cellular metabolites, to detect treatment response. Nuclear spin hyperpolarization can increase sensitivity in the magnetic resonance experiment >10,000 times, allowing us to image labelled cell substrates in vivo and their subsequent metabolism. We showed that exchange of hyperpolarized (13)C label between lactate and pyruvate, catalysed by lactate dehydrogenase, was decreased in treated tumours undergoing drug-induced cell death, and that tissue pH could be imaged from the ratio of the signal intensities of hyperpolarized H(13)CO(3)(-) and (13)CO(2) following intravenous injection of hyperpolarized H(13)CO(3). Tumour cell glutaminase activity, a potential measure of cell proliferation, can be determined using hyperpolarized [5-(13)C]glutamine, and treatment-induced tumour cell necrosis can be imaged in vivo from measurements of the conversion of hyperpolarized [1,4-(13)C(2)]fumarate into malate. Since these substrates are endogenous and, in some cases, have already been safely infused into patients, these techniques have the potential to translate to the clinic.


Assuntos
Isótopos de Carbono/análise , Espectroscopia de Ressonância Magnética , Neoplasias/metabolismo , Animais , Humanos , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA