Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Allergy Clin Immunol ; 150(5): 1154-1167, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35792218

RESUMO

BACKGROUND: Hyperinflammation is a life-threatening condition associated with various clinical disorders characterized by excessive immune activation and tissue damage. Multiple cytokines promote the development of hyperinflammation; however, the contribution of IL-10 remains unclear despite emerging speculations for a pathological role. Clinical observations from hemophagocytic lymphohistiocytosis (HLH), a prototypical hyperinflammatory disease, suggest that IL-18 and IL-10 may collectively promote the onset of a hyperinflammatory state. OBJECTIVE: We aimed to investigate the collaborative roles of IL-10 and IL-18 in hyperinflammation. METHODS: A comprehensive plasma cytokine profile for 87 secondary HLH patients was first depicted and analyzed. We then investigated the systemic and cellular effects of coelevated IL-10 and IL-18 in a transgenic mouse model and cultured macrophages. Single-cell RNA sequencing was performed on the monocytes/macrophages isolated from secondary HLH patients to explore the clinical relevance of IL-10/IL-18-mediated cellular signatures. The therapeutic efficacy of IL-10 blockade was tested in HLH mouse models. RESULTS: Excessive circulating IL-10 and IL-18 triggered a lethal hyperinflammatory disease recapitulating HLH-like phenotypes in mice, driving peripheral lymphopenia and a striking shift toward enhanced myelopoiesis in the bone marrow. IL-10 and IL-18 polarized cultured macrophages to a distinct proinflammatory state with pronounced expression of myeloid cell-recruiting chemokines. Transcriptional characterization suggested the IL-10/IL-18-mediated cellular features were clinically relevant with HLH, showing enhanced granzyme expression and proteasome activation in macrophages. IL-10 blockade protected against the lethal disease in HLH mouse models. CONCLUSION: Coelevated IL-10 and IL-18 are sufficient to drive HLH-like hyperinflammatory syndrome, and blocking IL-10 is protective in HLH models.


Assuntos
Interleucina-10 , Interleucina-18 , Linfo-Histiocitose Hemofagocítica , Mielopoese , Animais , Camundongos , Modelos Animais de Doenças , Linfo-Histiocitose Hemofagocítica/patologia
2.
Proc Natl Acad Sci U S A ; 115(23): 5998-6003, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784808

RESUMO

Nephrogenesis concludes by the 36th week of gestation in humans and by the third day of postnatal life in mice. Extending the nephrogenic period may reduce the onset of adult renal and cardiovascular disease associated with low nephron numbers. We conditionally deleted either Mtor or Tsc1 (coding for hamartin, an inhibitor of Mtor) in renal progenitor cells. Loss of one Mtor allele caused a reduction in nephron numbers; complete deletion led to severe paucity of glomeruli in the kidney resulting in early death after birth. By contrast, loss of one Tsc1 allele from renal progenitors resulted in a 25% increase in nephron endowment with no adverse effects. Increased progenitor engraftment rates ex vivo relative to controls correlated with prolonged nephrogenesis through the fourth postnatal day. Complete loss of both Tsc1 alleles in renal progenitors led to a lethal tubular lesion. The hamartin phenotypes are not dependent on the inhibitory effect of TSC on the Mtor complex but are dependent on Raptor.


Assuntos
Néfrons , Organogênese/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Néfrons/química , Néfrons/citologia , Néfrons/crescimento & desenvolvimento , Néfrons/fisiologia , Serina-Treonina Quinases TOR/genética , Proteína 1 do Complexo Esclerose Tuberosa
3.
Am J Med Genet A ; 179(6): 1010-1014, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30895720

RESUMO

Orofaciodigital syndrome type I and X-linked recessive Joubert syndrome are known ciliopathic disorders that are caused by pathogenic variants in OFD1 gene. Endocrine system involvement with these conditions is not well described. We present the first report of a newborn male with a novel hemizygous variant in OFD1 gene c.515T>C, (p.Leu172Pro) resulting in X-linked Joubert syndrome and orofaciodigital features with complete pituitary gland aplasia and subsequent severe hypoplasia of peripheral endocrine glands. This clinical report expands the phenotypic spectrum of endocrine system involvement in OFD1-related disorders and suggests that OFD1 gene may be related to pituitary gland development.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Genes Ligados ao Cromossomo X , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Mutação , Fenótipo , Proteínas/genética , Retina/anormalidades , Alelos , Genótipo , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Síndromes Orofaciodigitais/diagnóstico , Síndromes Orofaciodigitais/genética , Linhagem , Hipófise/anormalidades , Radiografia , Sequenciamento do Exoma
4.
Genome Res ; 23(1): 23-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23034409

RESUMO

An unanticipated and tremendous amount of the noncoding sequence of the human genome is transcribed. Long noncoding RNAs (lncRNAs) constitute a significant fraction of non-protein-coding transcripts; however, their functions remain enigmatic. We demonstrate that deletions of a small noncoding differentially methylated region at 16q24.1, including lncRNA genes, cause a lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), with parent-of-origin effects. We identify overlapping deletions 250 kb upstream of FOXF1 in nine patients with ACD/MPV that arose de novo specifically on the maternally inherited chromosome and delete lung-specific lncRNA genes. These deletions define a distant cis-regulatory region that harbors, besides lncRNA genes, also a differentially methylated CpG island, binds GLI2 depending on the methylation status of this CpG island, and physically interacts with and up-regulates the FOXF1 promoter. We suggest that lung-transcribed 16q24.1 lncRNAs may contribute to long-range regulation of FOXF1 by GLI2 and other transcription factors. Perturbation of lncRNA-mediated chromatin interactions may, in general, be responsible for position effect phenomena and potentially cause many disorders of human development.


Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Síndrome da Persistência do Padrão de Circulação Fetal/genética , RNA Longo não Codificante/genética , Cromatina/metabolismo , Cromossomos Humanos Par 16/genética , Ilhas de CpG , Elementos Facilitadores Genéticos , Evolução Fatal , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Impressão Genômica , Células HEK293 , Humanos , Recém-Nascido , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/diagnóstico , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Deleção de Sequência , Transcrição Gênica , Proteína Gli2 com Dedos de Zinco
5.
Hum Mol Genet ; 22(12): 2435-50, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23446636

RESUMO

Individual saposin A (A-/-) and saposin B (B-/-)-deficient mice show unique phenotypes caused by insufficient degradation of myelin-related glycosphingolipids (GSLs): galactosylceramide and galactosylsphingosine and sulfatide, respectively. To gain insight into the interrelated functions of saposins A and B, combined saposin AB-deficient mice (AB-/-) were created by knock-in point mutations into the saposins A and B domains on the prosaposin locus. Saposin A and B proteins were undetectable in AB-/- mice, whereas prosaposin, saposin C and saposin D were expressed near wild-type (WT) levels. AB-/- mice developed neuromotor deterioration at >61 days and exhibited abnormal locomotor activity and enhanced tremor. AB-/- mice (~96 days) lived longer than A-/- mice (~85 days), but shorter than B-/- mice (~644 days). Storage materials were observed in Schwann cells and neuronal processes by electron microscopy. Accumulation of p62 and increased levels of LC3-II were detected in the brainstem suggesting altered autophagy. GSL analyses by (liquid chromatography) LC/MS identified substantial increases in lactosylceramide in AB-/- mouse livers. Sulfatide accumulated, but galactosylceramide remained at WT levels, in the AB-/- mouse brains and kidneys. Brain galactosylsphingosine in AB-/- mice was ~68% of that in A-/- mice. These findings indicate that combined saposins A and B deficiencies attenuated GalCer-ß-galactosylceramidase and GM1-ß-galactosidase functions in the degradation of lactosylceramide preferentially in the liver. Blocking sulfatide degradation from the saposin B deficiency diminished galactosylceramide accumulation in the brain and kidney and galctosylsphingosine in the brain. These analyses of AB-/- mice continue to delineate the tissue differential interactions of saposins in GSL metabolism.


Assuntos
Glicoesfingolipídeos/metabolismo , Doenças do Sistema Nervoso/metabolismo , Saposinas/deficiência , Animais , Encéfalo/metabolismo , Feminino , Galactosilceramidase/metabolismo , Humanos , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/psicologia , Especificidade de Órgãos , Fenótipo , Saposinas/genética , beta-Galactosidase/metabolismo
6.
J Virol ; 86(15): 8131-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22623785

RESUMO

High-risk human papillomaviruses (HPVs) deregulate epidermal differentiation and cause anogenital and head and neck squamous cell carcinomas (SCCs). The E7 gene is considered the predominant viral oncogene and drives proliferation and genome instability. While the implementation of routine screens has greatly reduced the incidence of cervical cancers which are almost exclusively HPV positive, the proportion of HPV-positive head and neck SCCs is on the rise. High levels of HPV oncogene expression and genome load are linked to disease progression, but genetic risk factors that regulate oncogene abundance and/or genome amplification remain poorly understood. Fanconi anemia (FA) is a genome instability syndrome characterized at least in part by extreme susceptibility to SCCs. FA results from mutations in one of 15 genes in the FA pathway, whose protein products assemble in the nucleus and play important roles in DNA damage repair. We report here that loss of FA pathway components FANCA and FANCD2 stimulates E7 protein accumulation in human keratinocytes and causes increased epithelial proliferation and basal cell layer expansion in the HPV-positive epidermis. Additionally, FANCD2 loss stimulates HPV genome amplification in differentiating cells, demonstrating that the intact FA pathway functions to restrict the HPV life cycle. These findings raise the possibility that FA genes suppress HPV infection and disease and suggest possible mechanism(s) for reported associations of HPV with an FA cohort in Brazil and for allelic variation of FA genes with HPV persistence in the general population.


Assuntos
Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Genoma Viral/fisiologia , Papillomavirus Humano 16/fisiologia , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/metabolismo , Replicação Viral/fisiologia , Brasil/epidemiologia , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Linhagem Celular Transformada , Anemia de Fanconi/epidemiologia , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Anemia de Fanconi/virologia , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Feminino , Neoplasias de Cabeça e Pescoço/epidemiologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/virologia , Masculino , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia
7.
Hum Mol Genet ; 19(4): 634-47, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20015957

RESUMO

Saposins A, B, C and D are derived from a common precursor, prosaposin (psap). The few patients with saposin C deficiency develop a Gaucher disease-like central nervous system (CNS) phenotype attributed to diminished glucosylceramide (GC) cleavage activity by acid beta-glucosidase (GCase). The in vivo effects of saposin C were examined by creating mice with selective absence of saposin C (C-/-) using a knock-in point mutation (cysteine-to-proline) in exon 11 of the psap gene. In C-/- mice, prosaposin and saposins A, B and D proteins were present at near wild-type levels, but the saposin C protein was absent. By 1 year, the C-/- mice exhibited weakness of the hind limbs and progressive ataxia. Decreased neuromotor activity and impaired hippocampal long-term potentiation were evident. Foamy storage cells were observed in dorsal root ganglion and there was progressive loss of cerebellar Purkinje cells and atrophy of cerebellar granule cells. Ultrastructural analyses revealed inclusions in axonal processes in the spinal cord, sciatic nerve and brain, but no excess of multivesicular bodies. Activated microglial cells and astrocytes were present in thalamus, brain stem, cerebellum and spinal cord, indicating regional pro-inflammatory responses. No storage cells were found in visceral organs of these mice. The absence of saposin C led to moderate increases in GC and lactosylceramide (LacCer) and their deacylated analogues. These results support the view that saposin C has multiple roles in glycosphingolipid (GSL) catabolism as well as a prominent function in CNS and axonal integrity independent of its role as an optimizer/stabilizer of GCase.


Assuntos
Sistema Nervoso Central/metabolismo , Doença de Gaucher/metabolismo , Glucosilceramidase/metabolismo , Saposinas/deficiência , Animais , Comportamento Animal , Sistema Nervoso Central/citologia , Sistema Nervoso Central/enzimologia , Modelos Animais de Doenças , Feminino , Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Doença de Gaucher/fisiopatologia , Glucosilceramidase/genética , Glicoesfingolipídeos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células de Purkinje/metabolismo
8.
Hum Mol Genet ; 19(6): 1088-97, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20047948

RESUMO

Gaucher disease is caused by defective acid beta-glucosidase (GCase) function. Saposin C is a lysosomal protein needed for optimal GCase activity. To test the in vivo effects of saposin C on GCase, saposin C deficient mice (C-/-) were backcrossed to point mutated GCase (V394L/V394L) mice. The resultant mice (4L;C*) began to exhibit CNS abnormalities approximately 30 days: first as hindlimb paresis, then progressive tremor and ataxia. Death occurred approximately 48 days due to neurological deficits. Axonal degeneration was evident in brain stem, spinal cord and white matter of cerebellum accompanied by increasing infiltration of the brain stem, cortex and thalamus by CD68 positive microglial cells and activation of astrocytes. Electron microscopy showed inclusion bodies in neuronal processes and degenerating cells. Accumulation of p62 and Lamp2 were prominent in the brain suggesting the impairment of autophagosome/lysosome function. This phenotype was different from either V394L/V394L or C-/- alone. Relative to V394L/V394L mice, 4L;C* mice had diminished GCase protein and activity. Marked increases (20- to 30-fold) of glucosylsphingosine (GS) and moderate elevation (1.5- to 3-fold) of glucosylceramide (GC) were in 4L;C* brains. Visceral tissues had increases of GS and GC, but no storage cells were found. Neuronal cells in thick hippocampal slices from 4L;C* mice had significantly attenuated long-term potentiation, presumably resulting from substrate accumulation. The 4L;C* mouse mimics the CNS phenotype and biochemistry of some type 3 (neuronopathic) variants of Gaucher disease and is a unique model suitable for testing pharmacological chaperone and substrate reduction therapies, and investigating the mechanisms of neuronopathic Gaucher disease.


Assuntos
Doença de Gaucher/enzimologia , Glucosilceramidase/genética , Glucosilceramidas/metabolismo , Proteínas Mutantes/metabolismo , Doenças do Sistema Nervoso/complicações , Psicosina/análogos & derivados , Saposinas/deficiência , Substituição de Aminoácidos/genética , Animais , Encéfalo/enzimologia , Encéfalo/patologia , Encéfalo/ultraestrutura , Cromatografia Líquida , Modelos Animais de Doenças , Doença de Gaucher/genética , Doença de Gaucher/patologia , Doença de Gaucher/fisiopatologia , Inflamação/complicações , Inflamação/patologia , Potenciação de Longa Duração/fisiologia , Longevidade , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Espectrometria de Massas , Camundongos , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia , Fenótipo , Psicosina/metabolismo , Saposinas/metabolismo
9.
Am J Med Genet A ; 158A(8): 1971-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22711292

RESUMO

We report on a male neonate with prenatally diagnosed mosaicism for a supernumerary marker chromosome and multiple congenital anomalies. Prenatal ultrasound imaging revealed a heart defect, pleural effusion, clubbed feet, and absent right kidney. Clinical cytogenetic analysis of amniocytes identified a marker chromosome present in 10 out of 15 cells analyzed. Clinical evaluation of the neonate revealed distinct facial features, complex heart defects, solitary left kidney, and arachnodactyly. Chromosome analysis of lymphocytes demonstrated an abnormal male karyotype with a marker chromosome present in all 24 cells examined. To identify the marker chromosome, SNP microarray analysis was performed which detected the presence of a two copy gain of 17.7 Mb of DNA from the distal long arm of chromosome 15 (15q25.2-qter). FISH analysis using a probe specific to the 15q26.3 region showed one signal on each normal 15q and two signals, one on each arm of the marker chromosome resulting in four copies. Distal tetrasomy 15q is rare. Only 11 cases have been described in the literature, all due to a supernumerary analphoid marker chromosome consisting of an inverted duplication of the distal long arm of chromosome 15. We report on a unique patient with tetrasomy 15q with complex cardiovascular malformation (CVM) involving progressive diffuse pulmonary vein stenosis (PVS). We propose overexpression of three genes, ADAMTSL3, MESP1, and MESP2 as a potential mechanism for cardiac and vessel malformations associated with tetrasomy 15q. Finally, we believe cardiac defects with this genetic syndrome are a poor prognostic finding associated with high mortality.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 15 , Cardiopatias Congênitas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Tetrassomia , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Cariotipagem , Masculino
10.
Blood ; 113(3): 696-704, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18927430

RESUMO

Mice carrying a conditional prothrombin knockout allele (fII(lox)) were established to develop an experimental setting for exploring the importance of thrombin in the maintenance of vascular integrity, the inflammatory response, and disease processes in adult animals. In the absence of Cre-mediated recombination, homozygous fII(lox/lox) mice or compound heterozygous mice carrying one fII(lox) allele and one constitutive-null allele were viable. Young adults exhibited neither spontaneous bleeding events nor diminished reproductive success. However, the induction of Cre recombinase in fII(lox) mice using the poly I:C-inducible Mx1-Cre system resulted in the rapid and near-complete recombination of the fII(lox) allele within the liver, the loss of circulating prothrombin, and profound derangements in coagulation function. Consistent with the notion that thrombin regulates coagulation and inflammatory pathways, an additional early consequence of reducing prothrombin was impaired antimicrobial function in mice challenged with Staphylococcus aureus peritonitis. However, life expectancy in unchallenged adults genetically depleted of prothrombin was very short ( approximately 5-7 days). The loss of viability was associated with the development of severe hemorrhagic events within multiple tissues, particularly in the heart and brain. Unlike the constitutive loss of either clotting or platelet function alone, the conditional loss of prothrombin is uniformly not compatible with maintenance of hemostasis or long-term survival.


Assuntos
Encéfalo/patologia , Hemorragia/genética , Miocárdio/patologia , Protrombina/metabolismo , Animais , Coagulação Sanguínea/genética , Northern Blotting , Inflamação/genética , Integrases/genética , Camundongos , Camundongos Knockout , Peritonite/genética , Protrombina/genética
11.
Cell Stem Cell ; 28(3): 424-435.e6, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33232662

RESUMO

Squamous cell carcinoma (SCC) is a global public health burden originating in epidermal stem and progenitor cells (ESPCs) of the skin and mucosa. To understand how genetic risk factors contribute to SCC, studies of ESPC biology are imperative. Children with Fanconi anemia (FA) are a paradigm for extreme SCC susceptibility caused by germline loss-of-function mutations in FA DNA repair pathway genes. To discover epidermal vulnerabilities, patient-derived pluripotent stem cells (PSCs) conditional for the FA pathway were differentiated into ESPCs and PSC-derived epidermal organotypic rafts (PSC-EORs). FA PSC-EORs harbored diminished cell-cell junctions and increased proliferation in the basal cell compartment. Furthermore, desmosome and hemidesmosome defects were identified in the skin of FA patients, and these translated into accelerated blistering following mechanically induced stress. Together, we demonstrate that a critical DNA repair pathway maintains the structure and function of human skin and provide 3D epidermal models wherein SCC prevention can now be explored.


Assuntos
Carcinoma de Células Escamosas , Anemia de Fanconi , Diferenciação Celular , Criança , Reparo do DNA , Anemia de Fanconi/genética , Humanos , Pele
12.
Carcinogenesis ; 31(5): 886-93, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20110282

RESUMO

We describe for the first time the chemopreventive effects of S-(-)equol and R-(+)equol, diastereoisomers with contrasting affinities for estrogen receptors (ERs). S-(-)equol, a ligand for ERbeta, is an intestinally derived metabolite formed by many humans and by rodents consuming diets containing soy isoflavones. Whether the well-documented chemopreventive effect of a soy diet could be explained by equol's action was unclear because neither diastereoisomers had been tested in animal models of chemoprevention. Sprague-Dawley rats (n = 40-41 per group) were fed a soy-free AIN-93G diet or an AIN-93G diet supplemented with 250 mg/kg of S-(-)equol or R-(+)equol beginning day 35. On day 50, mammary tumors were induced by dimethylbenz[a]anthracene and thereafter, animals were palpated for number and location of tumors. On day 190, animals were killed and mammary tumors were removed and verified by histology, and the degree of invasiveness and differentiation was determined. S-(-)equol and R-(+)equol plasma concentrations measured on days 35, 100 and 190 by tandem mass spectrometry confirmed diet compliance and no biotransformation of either diastereoisomer. In this model, S-(-)equol had no chemopreventive action, nor was it stimulatory. In contrast, R-(+)equol compared with Controls reduced palpable tumors (P = 0.002), resulted in 43% fewer tumors (P = 0.004), increased tumor latency (88.5 versus 66 days, P = 0.003), and tumors were less invasive but showed no difference in pattern grade or mitosis. Both enantiomers had no effect on absolute uterine weight but caused a significant reduction in body weight gain. In conclusion, the novel finding that the unnatural enantiomer, R-(+)equol, was potently chemopreventive warrants investigation of its potential for breast cancer prevention and treatment.


Assuntos
Anticarcinógenos/farmacologia , Isoflavonas/farmacologia , Neoplasias Mamárias Experimentais/prevenção & controle , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Equol , Feminino , Isoflavonas/sangue , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Necrose , Invasividade Neoplásica , Ratos , Ratos Sprague-Dawley , Estereoisomerismo
13.
Hum Mol Genet ; 17(15): 2345-56, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18480170

RESUMO

Saposin B derives from the multi-functional precursor, prosaposin, and functions as an activity enhancer for several glycosphingolipid (GSL) hydrolases. Mutations in saposin B present in humans with phenotypes resembling metachromatic leukodystrophy. To gain insight into saposin B's physiological functions, a specific deficiency was created in mice by a knock-in mutation of an essential cysteine in exon 7 of the prosaposin locus. No saposin B protein was detected in the homozygotes (B-/-) mice, whereas prosaposin, and saposins A, C and D were at normal levels. B-/- mice exhibited slowly progressive neuromotor deterioration and minor head tremor by 15 months. Excess hydroxy and non-hydroxy fatty acid sulfatide levels were present in brain and kidney. Alcian blue positive (sulfatide) storage cells were found in the brain, spinal cord and kidney. Ultrastructural analyses showed lamellar inclusion material in the kidney, sciatic nerve, brain and spinal cord tissues. Lactosylceramide (LacCer) and globotriaosylceramide (TriCer) were increased in various tissues of B-/- mice supporting the in vivo role of saposin B in the degradation of these lipids. CD68 positive microglial cells and activated GFAP positive astrocytes showed a proinflammatory response in the brains of B-/- mice. These findings delineate the roles of saposin B for the in vivo degradation of several GSLs and its primary function in maintenance of CNS function. B-/- provide a useful model for understanding the contributions of this saposin to GSL metabolism and homeostasis.


Assuntos
Encéfalo/metabolismo , Glucosilceramidase/metabolismo , Glicoesfingolipídeos/metabolismo , Saposinas/fisiologia , Medula Espinal/metabolismo , Animais , Encéfalo/ultraestrutura , Feminino , Homozigoto , Rim/metabolismo , Rim/ultraestrutura , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Mutação Puntual , Saposinas/genética , Medula Espinal/ultraestrutura
14.
J Clin Invest ; 117(11): 3224-35, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17932565

RESUMO

Fibrin deposition within joints is a prominent feature of arthritis, but the precise contribution of fibrin(ogen) to inflammatory events that cause debilitating joint damage remains unknown. To determine the importance of fibrin(ogen) in arthritis, gene-targeted mice either deficient in fibrinogen (Fib-) or expressing mutant forms of fibrinogen, lacking the leukocyte receptor integrin alphaMbeta2 binding motif (Fibgamma390-396A) or the alphaIIbbeta3 platelet integrin-binding motif (FibgammaDelta5), were challenged with collagen-induced arthritis (CIA). Fib- mice exhibited fewer affected joints and reduced disease severity relative to controls. Similarly, diminished arthritis was observed in Fibgamma390-396A mice, which retain full clotting function. In contrast, arthritis in FibgammaDelta5 mice was indistinguishable from that of controls. Fibrin(ogen) was not essential for leukocyte trafficking to joints, but appeared to be involved in leukocyte activation events. Fib- and Fibgamma390-396A mice with CIA displayed reduced local expression of TNF-alpha, IL-1beta, and IL-6, which suggests that alphaMbeta2-mediated leukocyte engagement of fibrin is mechanistically upstream of the production of proinflammatory mediators. Supporting this hypothesis, arthritic disease driven by exuberant TNF-alpha expression was not impeded by fibrinogen deficiency. Thus, fibrin(ogen) is an important, but context-dependent, determinant of arthritis, and one mechanism linking fibrin(ogen) to joint disease is coupled to alphaMbeta2-mediated inflammatory processes.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Fibrina/metabolismo , Fibrinogênio/metabolismo , Antígeno de Macrófago 1/imunologia , Motivos de Aminoácidos , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Cartilagem Articular/patologia , Bovinos , Colágeno Tipo II/administração & dosagem , Colágeno Tipo II/imunologia , Citocinas/genética , Citocinas/imunologia , Fibrina/genética , Fibrinogênio/genética , Marcação de Genes , Humanos , Inflamação , Articulações/imunologia , Articulações/patologia , Leucócitos/imunologia , Antígeno de Macrófago 1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Mutação
15.
Am J Pathol ; 174(1): 71-81, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19036808

RESUMO

Overexpression of the DEK gene is associated with multiple human cancers, but its specific roles as a putative oncogene are not well defined. DEK transcription was previously shown to be induced by the high-risk human papillomavirus (HPV) E7 oncogene via E2F and Rb pathways. Transient DEK overexpression was able to inhibit both senescence and apoptosis in cultured cells. In at least the latter case, this mechanism involved the destabilization of p53 and the decreased expression of p53 target genes. We show here that DEK overexpression disrupts the normal differentiation program in a manner that is independent of either p53 or cell death. DEK expression was distinctly repressed upon the differentiation of cultured primary human keratinocytes, and stable DEK overexpression caused epidermal thickening in an organotypic raft model system. The observed hyperplasia involved a delay in keratinocyte differentiation toward a more undifferentiated state, and expansion of the basal cell compartment was due to increased proliferation, but not apoptosis. These phenotypes were accompanied by elevated p63 expression in the absence of p53 destabilization. In further support of bona fide oncogenic DEK activities, we report here up-regulated DEK protein levels in both human papilloma virus-positive hyperplastic murine skin and a subset of human squamous cell carcinomas. We suggest that DEK up-regulation may contribute to carcinoma development at least in part through increased proliferation and retardation of differentiation.


Assuntos
Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Proteínas Cromossômicas não Histona/biossíntese , Células Epiteliais/citologia , Queratinócitos/citologia , Proteínas Oncogênicas/biossíntese , Animais , Western Blotting , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Epitélio/metabolismo , Epitélio/patologia , Imunofluorescência , Prepúcio do Pênis/citologia , Expressão Gênica , Humanos , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/virologia , Queratinócitos/patologia , Queratinócitos/virologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas de Ligação a Poli-ADP-Ribose , Proto-Oncogene Mas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
16.
J Cell Physiol ; 220(2): 319-31, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19326388

RESUMO

Inactivation of the adenomatous polyposis coli (APC) tumor suppressor has been associated with mammary tumorigenesis in mouse models and through epidemiological studies of human breast cancers, but the normal role for APC in mammary development has not been thoroughly characterized. We report here that Apc(Min/+) mice containing one functional allele of Apc have severely disrupted lobuloalveolar development during pregnancy and lactation, time points at which Apc gene expression is at its highest levels in normal mice. This phenotype was accompanied by altered proliferation during pregnancy and involution, increased apoptosis throughout lactation, the formation of preneoplastic lesions and changes in specific genes associated with each of these processes. Neither modifications in beta-catenin localization, nor the expression of beta-catenin transcriptional target genes, were observed in Apc(Min/+) mammary tissues; however, tissues from lactating Apc(Min/+) mice had a significantly altered epithelial architecture, including disrupted localization of junctional proteins and polarization. Consistent with these findings, APC knockdown in non-transformed mouse mammary epithelial cells in vitro resulted in altered monolayer formation and proliferation without changes in beta-catenin-mediated transcription. These results suggest that APC expression is tightly regulated during mammary gland development and is required for normal mammary homeostasis and tumor suppression primarily through maintaining epithelial integrity.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Células Epiteliais , Regulação da Expressão Gênica , Glândulas Mamárias Animais , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Apoptose/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/anatomia & histologia , Epitélio/metabolismo , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Glândulas Mamárias Animais/anatomia & histologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise em Microsséries , Fenótipo , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Gravidez , beta Catenina/genética , beta Catenina/metabolismo
17.
BMC Neurosci ; 9: 76, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18673548

RESUMO

BACKGROUND: Prosaposin encodes, in tandem, four small acidic activator proteins (saposins) with specificities for glycosphingolipid (GSL) hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies. RESULTS: Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/-) and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA). Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD) was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport. CONCLUSION: These results show that: 1) Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2) Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3) CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression.


Assuntos
Encefalopatias/genética , Proteína delta de Ligação ao Facilitador CCAAT/genética , Perfilação da Expressão Gênica , Saposinas/deficiência , Fatores Etários , Animais , Encefalopatias/fisiopatologia , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/fisiologia , Cerebelo/patologia , Cerebelo/fisiopatologia , Cérebro/patologia , Cérebro/fisiopatologia , Análise por Conglomerados , Modelos Animais de Doenças , Regulação para Baixo/genética , Genes Reguladores , Glucosilceramidase/deficiência , Glucosilceramidase/genética , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Análise em Microsséries/métodos , Análise em Microsséries/estatística & dados numéricos , Atividade Motora/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saposinas/genética , Regulação para Cima/genética
18.
PLoS One ; 13(12): e0209235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30589865

RESUMO

Fanconi anemia is a rare genome instability disorder with extreme susceptibility to squamous cell carcinoma of the head and neck and anogenital tract. In patients with this inherited disorder, the risk of head and neck cancer is 800-fold higher than in the general population, a finding which might suggest a viral etiology. Here, we analyzed the possible contribution of human polyomaviruses to FA-associated head and neck squamous cell carcinoma (HNSCC) by a pan-polyomavirus immunohistochemistry test which detects the T antigens of all known human polyomaviruses. We observed weak reactivity in 17% of the HNSCC samples suggesting that based on classical criteria, human polyomaviruses are not causally related to squamous cell carcinomas analyzed in this study.


Assuntos
Anemia de Fanconi/virologia , Polyomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Linhagem Celular Tumoral , Anemia de Fanconi/imunologia , Anemia de Fanconi/patologia , Células HEK293 , Humanos , Infecções por Polyomavirus/imunologia , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
19.
Cancer Discov ; 8(11): 1438-1457, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30139811

RESUMO

Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic disorders that are incurable with conventional therapy. Their incidence is increasing with global population aging. Although many genetic, epigenetic, splicing, and metabolic aberrations have been identified in patients with MDS, their clinical features are quite similar. Here, we show that hypoxia-independent activation of hypoxia-inducible factor 1α (HIF1A) signaling is both necessary and sufficient to induce dysplastic and cytopenic MDS phenotypes. The HIF1A transcriptional signature is generally activated in MDS patient bone marrow stem/progenitors. Major MDS-associated mutations (Dnmt3a, Tet2, Asxl1, Runx1, and Mll1) activate the HIF1A signature. Although inducible activation of HIF1A signaling in hematopoietic cells is sufficient to induce MDS phenotypes, both genetic and chemical inhibition of HIF1A signaling rescues MDS phenotypes in a mouse model of MDS. These findings reveal HIF1A as a central pathobiologic mediator of MDS and as an effective therapeutic target for a broad spectrum of patients with MDS.Significance: We showed that dysregulation of HIF1A signaling could generate the clinically relevant diversity of MDS phenotypes by functioning as a signaling funnel for MDS driver mutations. This could resolve the disconnection between genotypes and phenotypes and provide a new clue as to how a variety of driver mutations cause common MDS phenotypes. Cancer Discov; 8(11); 1438-57. ©2018 AACR. See related commentary by Chen and Steidl, p. 1355 This article is highlighted in the In This Issue feature, p. 1333.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Hipóxia/fisiopatologia , Síndromes Mielodisplásicas/patologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Metaboloma , Camundongos , Camundongos Knockout , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo
20.
J Clin Invest ; 113(11): 1596-606, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15173886

RESUMO

The leukocyte integrin alpha(M)beta(2)/Mac-1 appears to support the inflammatory response through multiple ligands, but local engagement of fibrin(ogen) may be particularly important for leukocyte function. To define the biological significance of fibrin(ogen)-alpha(M)beta(2) interaction in vivo, gene-targeted mice were generated in which the alpha(M)beta(2)-binding motif within the fibrinogen gamma chain (N(390)RLSIGE(396)) was converted to a series of alanine residues. Mice carrying the Fibgamma(390-396A) allele maintained normal levels of fibrinogen, retained normal clotting function, supported platelet aggregation, and never developed spontaneous hemorrhagic events. However, the mutant fibrinogen failed to support alpha(M)beta(2)-mediated adhesion of primary neutrophils, macrophages, and alpha(M)beta(2)-expressing cell lines. The elimination of the alpha(M)beta(2)-binding motif on fibrin(ogen) severely compromised the inflammatory response in vivo as evidenced by a dramatic impediment in leukocyte clearance of Staphylococcus aureus inoculated into the peritoneal cavity. This defect in bacterial clearance was due not to diminished leukocyte trafficking but rather to a failure to fully implement antimicrobial functions. These studies definitively demonstrate that fibrin(ogen) is a physiologically relevant ligand for alpha(M)beta(2), integrin engagement of fibrin(ogen) is critical to leukocyte function and innate immunity in vivo, and the biological importance of fibrinogen in regulating the inflammatory response can be appreciated outside of any alteration in clotting function.


Assuntos
Fibrina/metabolismo , Fibrinogênio/metabolismo , Antígeno de Macrófago 1/metabolismo , Animais , Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Fibrina/genética , Fibrinogênio/genética , Inflamação , Leucócitos/metabolismo , Camundongos , Mutagênese Sítio-Dirigida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA