Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 145(4): 543-54, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565613

RESUMO

In eukaryotes, each of the more than 100 copies of ribosomal RNA (rRNA) genes exists in either an RNA polymerase I transcribed open chromatin state or a nucleosomal, closed chromatin state. Open rRNA genes guarantee the cell's supply with structural components of the ribosome, whereas closed rRNA genes ensure genomic integrity. We report that the observed balance between open and closed rRNA gene chromatin states in proliferating yeast cells is due to a dynamic equilibrium of transcription-dependent removal and replication-dependent assembly of nucleosomes. Pol I transcription is required for the association of the HMG box protein Hmo1 with open rRNA genes, counteracting replication-independent nucleosome deposition and maintaining the open rRNA gene chromatin state outside of S phase. The findings indicate that the opposing effects of replication and transcription lead to a de novo establishment of chromatin states for rRNA genes during each cell cycle.


Assuntos
Cromatina/metabolismo , Genes de RNAr , Saccharomyces cerevisiae/citologia , Ciclo Celular , Replicação do DNA , DNA Ribossômico/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
2.
Nucleic Acids Res ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373531

RESUMO

As a first step in eukaryotic ribosome biogenesis RNA polymerase (Pol) I synthesizes a large ribosomal RNA (rRNA) precursor from multicopy rRNA gene loci. This process is essential for cellular growth and regulated in response to the cell's physiological state. rRNA gene transcription is downregulated upon growth to stationary phase in the yeast Saccharomyces cerevisiae. This reduction correlates with characteristic changes in rRNA gene chromatin structure from a transcriptionally active 'open' state to a non-transcribed 'closed' state. The conserved lysine deacetylase Rpd3 was shown to be required for this chromatin transition. We found that Rpd3 is needed for tight repression of Pol I transcription upon growth to stationary phase as a prerequisite for the establishment of the closed chromatin state. We provide evidence that Rpd3 regulates Pol I transcription by adjusting cellular levels of the Pol I preinitiation complex component core factor (CF). Importantly, our study identifies CF as the complex limiting the number of open rRNA genes in exponentially growing and stationary cells.

3.
Nucleic Acids Res ; 42(1): 380-95, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24097442

RESUMO

The cytotoxicity of UV light-induced DNA lesions results from their interference with transcription and replication. DNA lesions arrest elongating RNA polymerases, an event that triggers transcription-coupled nucleotide excision repair. Since arrested RNA polymerases reduce the accessibility of repair factors to DNA lesions, they might be displaced. The fate of arrested RNA polymerases-II at DNA lesions has been extensively studied, yielding partially contradictory results. Considerably less is known about RNA polymerases-I that transcribe nucleosomes-depleted rRNA genes at very high rate. To investigate the fate of arrested RNA polymerases-I at DNA lesions, chromatin-immunoprecipitation, electron microscopy, transcription run-on, psoralen-cross-linking and chromatin-endogenous cleavage were employed. We found that RNA polymerases-I density increased at the 5'-end of the gene, likely due to continued transcription initiation followed by elongation and pausing/release at the first DNA lesion. Most RNA polymerases-I dissociated downstream of the first DNA lesion, concomitant with chromatin closing that resulted from deposition of nucleosomes. Although nucleosomes were deposited, the high mobility group-box Hmo1 (component of actively transcribed rRNA genes) remained associated. After repair of DNA lesions, Hmo1 containing chromatin might help to restore transcription elongation and reopening of rRNA genes chromatin.


Assuntos
Cromatina/química , Dano ao DNA , Reparo do DNA , Genes de RNAr , RNA Polimerase I/metabolismo , Raios Ultravioleta , Cromatina/efeitos da radiação , DNA Ribossômico/química , DNA Ribossômico/efeitos da radiação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Dímeros de Pirimidina/metabolismo , RNA Ribossômico/biossíntese , Leveduras/enzimologia , Leveduras/efeitos da radiação
4.
Nucleic Acids Res ; 42(1): e2, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24106087

RESUMO

Chromatin is the template for replication and transcription in the eukaryotic nucleus, which needs to be defined in composition and structure before these processes can be fully understood. We report an isolation protocol for the targeted purification of specific genomic regions in their native chromatin context from Saccharomyces cerevisiae. Subdomains of the multicopy ribosomal DNA locus containing transcription units of RNA polymerases I, II or III or an autonomous replication sequence were independently purified in sufficient amounts and purity to analyze protein composition and histone modifications by mass spectrometry. We present and discuss the proteomic data sets obtained for chromatin in different functional states. The native chromatin was further amenable to electron microscopy analysis yielding information about nucleosome occupancy and positioning at the single-molecule level. We also provide evidence that chromatin from virtually every single copy genomic locus of interest can be purified and analyzed by this technique.


Assuntos
Cromossomos Fúngicos/química , Saccharomyces cerevisiae/genética , Fosfatase Ácida/genética , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , Genômica/métodos , Histonas/metabolismo , Espectrometria de Massas , Nucleossomos/química , Regiões Promotoras Genéticas , Proteoma/isolamento & purificação , RNA Ribossômico 5S/química , RNA Ribossômico 5S/ultraestrutura , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
5.
Biochim Biophys Acta ; 1829(3-4): 405-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23291532

RESUMO

Eukaryotic transcription of ribosomal RNAs (rRNAs) by RNA polymerase I can account for more than half of the total cellular transcripts depending on organism and growth condition. To support this level of expression, eukaryotic rRNA genes are present in multiple copies. Interestingly, these genes co-exist in different chromatin states that may differ significantly in their nucleosome content and generally correlate well with transcriptional activity. Here we review how these chromatin states have been discovered and characterized focusing particularly on their structural protein components. The establishment and maintenance of rRNA gene chromatin states and their impact on rRNA synthesis are discussed. This article is part of a Special Issue entitled: Transcription by Odd Pols.


Assuntos
Cromatina/química , DNA Ribossômico/química , Transcrição Gênica , Animais , Cromatina/metabolismo , DNA Ribossômico/metabolismo , Epigênese Genética , Loci Gênicos , Humanos , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , RNA Ribossômico/genética
6.
J Biotechnol ; 349: 53-64, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35341894

RESUMO

In recent years, acceleration of development timelines has become a major focus within the biopharmaceutical industry to bring innovative therapies faster to patients. However, in order to address a high unmet medical need even faster further acceleration potential has to be identified to transform "speed-to-clinic" concepts into "warp-speed" development programs. Recombinant Chinese hamster ovary (CHO) cell lines are the predominant expression system for monoclonal antibodies (mAbs) and are routinely generated by random transgene integration (RTI) of the genetic information into the host cell genome. This process, however, exhibits considerable challenges such as the requirement for a time-consuming clone screening process to identify a suitable clonally derived manufacturing cell line. Hence, RTI represents an error prone and tedious method leading to long development timelines until availability of Good Manufacturing Practice (GMP)-grade drug substance (DS). Transposase-mediated semi-targeted transgene integration (STI) has been recently identified as a promising alternative to RTI as it allows for a more rapid generation of high-performing and stable production cell lines. In this report, we demonstrate how a STI technology was leveraged to develop a very robust DS manufacturing process based on a stable pool cell line at unprecedented pace. Application of the novel strategy resulted in the manufacturing of GMP-grade DS at 2,000 L scale in less than three months paving the way for a start of Phase I clinical trials only six months after transfection. Finally, using a clonally derived production cell line, which was established from the parental stable pool, we were able to successfully implement a process with an increased mAb titer of up to 5 g per liter at the envisioned commercial scale (12,000 L) within eight months.


Assuntos
Anticorpos Monoclonais , Infecções Sexualmente Transmissíveis , Aceleração , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Infecções Sexualmente Transmissíveis/tratamento farmacológico , Transposases
7.
Methods Mol Biol ; 1094: 329-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24163000

RESUMO

Most methods currently available for the analysis of chromatin in vivo rely on a priori knowledge of putative chromatin components or their posttranslational modification state. The isolation of defined native chromosomal regions provides an attractive alternative to obtain a largely unbiased molecular description of chromatin. Here, we describe a strategy combining site-specific recombination at the chromosome with an efficient tandem affinity purification protocol to isolate a single-copy gene locus from the yeast Saccharomyces cerevisiae. The method allows robust enrichment of a targeted chromatin domain, making it amenable to compositional, structural, and biochemical analyses. This technique appears to be suitable to obtain a detailed description of chromatin composition and specific posttranslational histone modification state at virtually any genomic locus in yeast.


Assuntos
Bioquímica/métodos , Cromatina/metabolismo , Dosagem de Genes , Genes Fúngicos/genética , Loci Gênicos , Saccharomyces cerevisiae/genética , Proliferação de Células , Cromatografia de Afinidade , DNA Fúngico/metabolismo , Proteínas Fúngicas/metabolismo , Imunoglobulina G/metabolismo , Fenômenos Magnéticos , Microesferas , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
8.
Methods Mol Biol ; 809: 291-301, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22113284

RESUMO

In eukaryotes, multiple copies of ribosomal RNA (rRNA) genes co-exist in two different chromatin states: actively transcribed (nucleosome depleted) chromatin, and nontranscribed (nucleosomal) chromatin. The presence of two rRNA gene populations compromises the interpretation of analyses obtained by the standard biochemical methods that are used to study chromatin structure (e.g., nuclease digestion and chromatin immunoprecipitation). Here, we provide a protocol to investigate the specific association of proteins with the two rRNA gene chromatin populations in vivo, using Saccharomyces cerevisiae as a model eukaryote.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Ficusina/química , Genes de RNAr/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
9.
Mol Cell Biol ; 30(8): 2028-45, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20154141

RESUMO

In all eukaryotes, a specialized enzyme, RNA polymerase I (Pol I), is dedicated to transcribe the 35S rRNA gene from a multicopy gene cluster, the ribosomal DNA (rDNA). In certain Saccharomyces cerevisiae mutants, 35S rRNA genes can be transcribed by RNA polymerase II (Pol II). In these mutants, rDNA silencing of Pol II transcription is impaired. It has been speculated that upstream activating factor (UAF), which binds to a specific DNA element within the Pol I promoter, plays a crucial role in forming chromatin structures responsible for polymerase specificity and silencing at the rDNA locus. We therefore performed an in-depth analysis of chromatin structure and composition in different mutant backgrounds. We demonstrate that chromatin architecture of the entire Pol I-transcribed region is substantially altered in the absence of UAF, allowing RNA polymerases II and III to access DNA elements flanking a Pol promoter-proximal Reb1 binding site. Furthermore, lack of UAF leads to the loss of Sir2 from rDNA, correlating with impaired Pol II silencing. This analysis of rDNA chromatin provides a molecular basis, explaining many phenotypes observed in previous genetic analyses.


Assuntos
Cromatina/química , Conformação de Ácido Nucleico , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Cromatina/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase I/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA