Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 89(7): 3746-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25609805

RESUMO

UNLABELLED: Vaccines are used in integrated control strategies to protect poultry against H5N1 high-pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003, and vaccination was initiated in 2004, but reports of vaccine failures began to emerge in mid-2005. This study investigated the role of Indonesian licensed vaccines, specific vaccine seed strains, and emerging variant field viruses as causes of vaccine failures. Eleven of 14 licensed vaccines contained the manufacturer's listed vaccine seed strains, but 3 vaccines contained a seed strain different from that listed on the label. Vaccines containing A/turkey/Wisconsin/1968 (WI/68), A/chicken/Mexico/28159-232/1994 (Mex/94), and A/turkey/England/N28/1973 seed strains had high serological potency in chickens (geometric mean hemagglutination inhibition [HI] titers, ≥ 1:169), but vaccines containing strain A/chicken/Guangdong/1/1996 generated by reverse genetics (rg; rgGD/96), A/chicken/Legok/2003 (Legok/03), A/chicken/Vietnam/C57/2004 generated by rg (rgVN/04), or A/chicken/Legok/2003 generated by rg (rgLegok/03) had lower serological potency (geometric mean HI titers, ≤ 1:95). In challenge studies, chickens immunized with any of the H5 avian influenza vaccines were protected against A/chicken/West Java/SMI-HAMD/2006 (SMI-HAMD/06) and were partially protected against A/chicken/Papua/TA5/2006 (Papua/06) but were not protected against A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Experimental inactivated vaccines made with PWT/06 HPAI virus or rg-generated PWT/06 low-pathogenicity avian influenza (LPAI) virus seed strains protected chickens from lethal challenge, as did a combination of a commercially available live fowl poxvirus vaccine expressing the H5 influenza virus gene and inactivated Legok/03 vaccine. These studies indicate that antigenic variants did emerge in Indonesia following widespread H5 avian influenza vaccine usage, and efficacious inactivated vaccines can be developed using antigenic variant wild-type viruses or rg-generated LPAI virus seed strains containing the hemagglutinin and neuraminidase genes of wild-type viruses. IMPORTANCE: H5N1 high-pathogenicity avian influenza (HPAI) virus has become endemic in Indonesian poultry, and such poultry are the source of virus for birds and mammals, including humans. Vaccination has become a part of the poultry control strategy, but vaccine failures have occurred in the field. This study identified possible causes of vaccine failure, which included the use of an unlicensed virus seed strain and induction of low levels of protective antibody because of an insufficient quantity of vaccine antigen. However, the most important cause of vaccine failure was the appearance of drift variant field viruses that partially or completely overcame commercial vaccine-induced immunity. Furthermore, experimental vaccines using inactivated wild-type virus or reverse genetics-generated vaccines containing the hemagglutinin and neuraminidase genes of wild-type drift variant field viruses were protective. These studies indicate the need for surveillance to identify drift variant viruses in the field and update licensed vaccines when such variants appear.


Assuntos
Anticorpos Antivirais/sangue , Proteção Cruzada , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Animais , Variação Antigênica , Galinhas , Deriva Genética , Indonésia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/imunologia , Análise de Sobrevida , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
2.
Curr Top Microbiol Immunol ; 365: 171-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22956392

RESUMO

Indonesia is one of the five countries where highly pathogenic avian influenza viruses of the H5N1 subtype (H5N1 HPAI) remain endemic in poultry. Importantly, it is one of the countries where the virus causes human infections. WHO data indicate that as of 2 May 2012, 189 human cases of Influenza A (H5N1) had been reported in Indonesia, with 157 human deaths. These human cases included a small number in which limited human-to-human transmission could have occurred. Hence, there remains a critical need in Indonesia for a more effective One Health approach to the control and prevention of this disease in people and in poultry. This chapter explores a number of aspects of the evolution of this disease in Indonesia, the virus that causes it and the control and preventive measures introduced, focusing on the successes and shortcomings of veterinary and One Health approaches. Indonesia provides many examples of situations where this latter approach has been successful, and others where further work is needed to maximize the benefits from coordinated responses to this disease leading to effective management of the risk to human health.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Humana/prevenção & controle , Animais , Humanos , Indonésia , Influenza Humana/transmissão , Aves Domésticas , Estudos Retrospectivos , Vacinação
3.
Vet World ; 16(11): 2217-2229, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38152276

RESUMO

In Indonesia, the buffalo is important for small and marginal farmers' livelihood and economic development as a source of food, working animal, and tourist attraction. Therefore, an in-depth study is needed to examine challenges and opportunities for buffalo development in Indonesia. In Indonesia, the buffalo is divided into two types: swamp buffalo and river buffalo. The buffalo population in Indonesia has declined significantly. A decrease of approximately 39.35% was recorded from 2022 to 2017. The decline occurred due to low reproduction rate and suboptimal rearing management systems. There are three buffalo-rearing systems: Intensive, semi-intensive, and extensive. The productivity of buffalo is diverse and closely related to the characteristics of the regional agroecosystem, consistent with existing natural resources and rearing management systems. The diversity of buffalo productivity provides a good opportunity to improve productivity. Improvement of buffalo genetics is urgently needed, by improving mating management, etc., especially to reduce potential inbreeding. In recent years, genetic and molecular research on Indonesian buffalo has made progress, including use of molecular markers, such as microsatellites and single-nucleotide polymorphisms, to evaluate genetic diversity within and among buffalo populations across Indonesia. In addition, studies are being conducted on the relationship of genotype mutations that contribute to appearance and phenotypic performance (heat stress, reproduction, behavior, coat color, and production attributes) in buffaloes. Identification of genetic diversity in local buffaloes can be improved using various genetic and genomic techniques. These findings will form a basis for the targeted conservation of local buffaloes in Indonesia. This study aimed to collect information on the genetic resources of the local buffalo, particularly its status and production system and provide recommendations for developing buffalo production in Indonesia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA