Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Genomics ; 114(6): 110510, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36272495

RESUMO

Copy-number aberrations (CNAs) are assessed using FISH analysis in diagnostics of chronic lymphocytic leukemia (CLL), but CNAs can also be extrapolated from Illumina BeadChips developed for genome-wide methylation microarray screening. Increasing numbers of microarray data-sets are available from diagnostic samples, making it useful to assess the potential in CNA diagnostics. We benchmarked the limitations of CNA testing from two Illumina BeadChips (EPIC and 450k) and using two common packages for analysis (conumee and ChAMP) to FISH-based assessment of 11q, 13q, and 17p deletions in 202 CLL samples. Overall, the two packages predicted CNAs with similar accuracy regardless of the microarray type, but lower than FISH-based assessment. We showed that the bioinformatics analysis needs to be adjusted to the specific CNA, as no general settings were identified. Altogether, we were able to predict CNAs using methylation microarray data, however, with limited accuracy, making FISH-based assessment of deletions the superior diagnostic choice.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Biologia Computacional
2.
Int J Mol Sci ; 24(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37762215

RESUMO

Mastocytosis is a clinically heterogenous, usually acquired disease of the mast cells with a survival time that depends on the time of onset. It ranges from skin-limited to systemic disease, including indolent and more aggressive variants. The presence of the oncogenic KIT p. D816V gene somatic mutation is a crucial element in the pathogenesis. However, further epigenetic regulation may also affect the expression of genes that are relevant to the pathology. Epigenetic alterations are responsible for regulating the expression of genes that do not modify the DNA sequence. In general, it is accepted that DNA methylation inhibits the binding of transcription factors, thereby down-regulating gene expression. However, so far, little is known about the epigenetic factors leading to the clinical onset of mastocytosis. Therefore, it is essential to identify possible epigenetic predictors, indicators of disease progression, and their link to the clinical picture to establish appropriate management and a therapeutic strategy. The aim of this study was to analyze genome-wide methylation profiles to identify differentially methylated regions (DMRs) in patients with mastocytosis compared to healthy individuals, as well as the genes located in those regulatory regions. Genome-wide DNA methylation profiling was performed in peripheral blood collected from 80 adult patients with indolent systemic mastocytosis (ISM), the most prevalent subvariant of mastocytosis, and 40 healthy adult volunteers. A total of 117 DNA samples met the criteria for the bisulfide conversion step and microarray analysis. Genome-wide DNA methylation analysis was performed using a MethylationEPIC BeadChip kit. Further analysis was focused on the genomic regions rather than individual CpG sites. Co-methylated regions (CMRs) were assigned via the CoMeBack method. To identify DMRs between the groups, a linear regression model with age as the covariate on CMRs was performed using Limma. Using the available data for cases only, an association analysis was performed between methylation status and tryptase levels, as well as the context of allergy, and anaphylaxis. KEGG pathway mapping was used to identify genes differentially expressed in anaphylaxis. Based on the DNA methylation results, the expression of 18 genes was then analyzed via real-time PCR in 20 patients with mastocytosis and 20 healthy adults. A comparison of the genome-wide DNA methylation profile between the mastocytosis patients and healthy controls revealed significant differences in the methylation levels of 85 selected CMRs. Among those, the most intriguing CMRs are 31 genes located within the regulatory regions. In addition, among the 10 CMRs located in the promoter regions, 4 and 6 regions were found to be either hypo- or hypermethylated, respectively. Importantly, three oncogenes-FOXQ1, TWIST1, and ERG-were identified as differentially methylated in mastocytosis patients, for the first time. Functional annotation revealed the most important biological processes in which the differentially methylated genes were involved as transcription, multicellular development, and signal transduction. The biological process related to histone H2A monoubiquitination (GO:0035518) was found to be enriched in association with higher tryptase levels, which may be associated with more aberrant mast cells and, therefore, more atypical mast cell disease. The signal in the BAIAP2 gene was detected in the context of anaphylaxis, but no significant differential methylation was found in the context of allergy. Furthermore, increased expression of genes encoding integral membrane components (GRM2 and KRTCAP3) was found in mastocytosis patients. This study confirms that patients with mastocytosis differ significantly in terms of methylation levels in selected CMRs of genes involved in specific molecular processes. The results of gene expression profiling indicate the increased expression of genes belonging to the integral component of the membrane in mastocytosis patients (GRM2 and KRTCAP3). Further work is warranted, especially in relation to the disease subvariants, to identify links between the methylation status and the symptoms and novel therapeutic targets.


Assuntos
Anafilaxia , Mastocitose Sistêmica , Adulto , Humanos , Metilação de DNA , Mastocitose Sistêmica/genética , Mastocitose Sistêmica/diagnóstico , Epigênese Genética , Anafilaxia/genética , Triptases/genética , Oncogenes , DNA , Expressão Gênica , Ilhas de CpG , Fatores de Transcrição Forkhead/genética
3.
Haematologica ; 107(4): 877-886, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34092057

RESUMO

Currently, no molecular biomarker indices are used in standard care to make treatment decisions at diagnosis of chronic lymphocytic leukemia (CLL). We used Infinium MethylationEPIC array data from diagnostic blood samples of 114 CLL patients and developed a procedure to stratify patients based on methylation signatures associated with mutation load of the IGHV gene. This procedure allowed us to predict the time to treatment with a hazard ratio (HR) of 8.34 (95% confidence interval [CI]: 4.54-15.30), as opposed to a HR of 4.35 (95% CI: 2.60-7.28) using IGHV mutation status. Detailed evaluation of 17 cases for which the two classification procedures gave discrepant results showed that these cases were incorrectly classified using IGHV status. Moreover, methylation-based classification stratified patients with different overall survival (HR=1.82; 95% CI: 1.07-3.09), which was not possible using IGHV status. Furthermore, we assessed the performance of the developed classification procedure using published HumanMethylation450 array data for 159 patients for whom information on time to treatment, overall survival and relapse was available. Despite 450K array methylation data not containing all the biomarkers used in our classification procedure, methylation signatures again stratified patients with significantly better accuracy than did IGHV mutation load regarding all available clinical outcomes. Thus, stratification using IGHV-associated methylation signatures may provide better prognostic power than IGHV mutation status.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Metilação , Mutação , Prognóstico
4.
Int J Cancer ; 146(5): 1293-1298, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469414

RESUMO

Methylation of the promoter of the BRCA1 gene in DNA derived from peripheral blood cells is a possible risk factor for breast cancer. It is not clear if this association is restricted to certain types of breast cancer or is a general phenomenon. We evaluated BRCA1 methylation status in peripheral blood cells from 942 breast cancer patients and from 500 controls. We also assessed methylation status in 262 paraffin-embedded breast cancer tissues. Methylation status was assessed using methylation-sensitive high-resolution melting and was categorized as positive or negative. BRCA1 methylation in peripheral blood cells was strongly associated with the risk of triple-negative breast cancer (TNBC) (odds ratio [OR] 4.70; 95% confidence interval [CI]: 3.13-7.07; p < 0.001), but not of estrogen-receptor positive breast cancer (OR 0.80; 95% CI: 0.46-1.42; p = 0.46). Methylation was also overrepresented among patients with high-grade cancers (OR 4.53; 95% CI: 2.91-7.05; p < 0.001) and medullary cancers (OR 3.08; 95% CI: 1.38-6.88; p = 0.006). Moreover, we detected a significant concordance of BRCA1 promoter methylation in peripheral blood and paired tumor tissue (p < 0.001). We found that BRCA1 promoter methylation in peripheral blood cells is associated with approximately five times greater risk of TNBC. We propose that BRCA1 methylation in blood-derived DNA could be a novel biomarker of increased breast cancer susceptibility, in particular for triple-negative tumors.


Assuntos
Proteína BRCA1/genética , Biomarcadores Tumorais/genética , Predisposição Genética para Doença , Regiões Promotoras Genéticas/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Mama/patologia , Estudos de Casos e Controles , Metilação de DNA , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/patologia
5.
BMC Med Genet ; 18(1): 21, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241754

RESUMO

BACKGROUND: Childhood trauma is associated with increased vulnerability to mental and somatic disorders later in life. Epigenetic modifications such as DNA methylation are one potential mechanism through which such long-lasting impairments/consequences can be explained. The aim of the present study was to investigate whether childhood trauma is associated with long-term DNA methylation alterations in old age. METHODS: We assessed genome-wide DNA methylation profiles in a cohort of former indentured child laborers ("Verdingkinder") who suffered severe childhood adversities (N = 30; M age = 75.9 years), and compared them to control group with similar demographic characteristics (N = 15, M age = 72.8 years). DNA was isolated from epithelial buccal cells and hybridized to the Illumina Infinium 450 k DNA methylation array, which provides coverage of 485,000 methylation sites. RESULTS: After accounting for batch effects, age, gender and multiple testing, 71 differentially methylated CpG positions were identified between the two groups. They were annotated among others to genes involved in neuronal projections and neuronal development. Some of the identified genes with differential methylation (DLG associated protein 2, mechanistic target of rapamycin) have previously been associated with traumatic stress. CONCLUSIONS: The results indicate specific epigenetic alterations in elderly individuals who were subjected to childhood adversities. Psychiatric and somatic comorbidities as well as differences in buccal epithelial cells proportion may contribute to the observed epigenetic differences.


Assuntos
Maus-Tratos Infantis , Metilação de DNA , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Ilhas de CpG , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mucosa Bucal/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas/genética
6.
Arch Toxicol ; 91(5): 2067-2078, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27838757

RESUMO

Arsenic, a carcinogen with immunotoxic effects, is a common contaminant of drinking water and certain food worldwide. We hypothesized that chronic arsenic exposure alters gene expression, potentially by altering DNA methylation of genes encoding central components of the immune system. We therefore analyzed the transcriptomes (by RNA sequencing) and methylomes (by target-enrichment next-generation sequencing) of primary CD4-positive T cells from matched groups of four women each in the Argentinean Andes, with fivefold differences in urinary arsenic concentrations (median concentrations of urinary arsenic in the lower- and high-arsenic groups: 65 and 276 µg/l, respectively). Arsenic exposure was associated with genome-wide alterations of gene expression; principal component analysis indicated that the exposure explained 53% of the variance in gene expression among the top variable genes and 19% of 28,351 genes were differentially expressed (false discovery rate <0.05) between the exposure groups. Key genes regulating the immune system, such as tumor necrosis factor alpha and interferon gamma, as well as genes related to the NF-kappa-beta complex, were significantly downregulated in the high-arsenic group. Arsenic exposure was associated with genome-wide DNA methylation; the high-arsenic group had 3% points higher genome-wide full methylation (>80% methylation) than the lower-arsenic group. Differentially methylated regions that were hyper-methylated in the high-arsenic group showed enrichment for immune-related gene ontologies that constitute the basic functions of CD4-positive T cells, such as isotype switching and lymphocyte activation and differentiation. In conclusion, chronic arsenic exposure from drinking water was related to changes in the transcriptome and methylome of CD4-positive T cells, both genome wide and in specific genes, supporting the hypothesis that arsenic causes immunotoxicity by interfering with gene expression and regulation.


Assuntos
Arsênio/toxicidade , Linfócitos T CD4-Positivos/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Adulto , Argentina , Linfócitos T CD4-Positivos/fisiologia , Ilhas de CpG , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas
7.
Mol Biol Rep ; 43(3): 141-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26857655

RESUMO

Mastermind-like 1 (MAML1) is a transcriptional coregulator that has been associated with early development of many systems such as neuronal, muscular and urogenital. The present study aimed to explore the genome wide effects of MAML1 on DNA methylation and RNA expression in human embryonic kidney cells. Infinium HumanMethylation450 BeadChip Illumina array, methylation-sensitive high-resolution melt technique, Chip Analysis Methylation Pipeline and RNA profiling approaches were used to study MAML1 effects on the epigenome. We found that 11802 CpG sites were differentially methylated in MAML1-expressing cells while only 225 genes were differentially expressed. MAML1 overexpression induced more global differential hypermethylation than hypomethylation changes. In addition, the differentially methylated regions were mapped predominantly to 3'untranslated regions, intragenic regions and gene bodies and to a lesser extent to gene regulatory sequences. Gene ontology analysis revealed that the differentially changed genes (including HOXC11, HTATIP2, SLFN12 and SOX11) are involved in the regulation of urogenital system development, cell adhesion and embryogenesis. This study is the first report that shows the global effect of a single coregulator on DNA methylation and gene expression. Our results stress and support the effects of transcriptional coregulators on the cell methylome.


Assuntos
Ilhas de CpG , Metilação de DNA , Proteínas de Ligação a DNA/genética , Rim/citologia , Fatores de Transcrição/genética , Transcriptoma , Acetiltransferases/genética , Acetiltransferases/metabolismo , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Rim/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
8.
Bioinformatics ; 30(3): 428-30, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24336642

RESUMO

UNLABELLED: The Illumina Infinium HumanMethylation450 BeadChip is a new platform for high-throughput DNA methylation analysis. Several methods for normalization and processing of these data have been published recently. Here we present an integrated analysis pipeline offering a choice of the most popular normalization methods while also introducing new methods for calling differentially methylated regions and detecting copy number aberrations. AVAILABILITY AND IMPLEMENTATION: ChAMP is implemented as a Bioconductor package in R. The package and the vignette can be downloaded at bioconductor.org


Assuntos
Metilação de DNA , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Variações do Número de Cópias de DNA
9.
Exp Mol Pathol ; 99(3): 632-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26551081

RESUMO

Readily accessible formalin-fixed paraffin embedded (FFPE) tissues are a highly valuable source of genetic material for molecular analyses in both research and in vitro diagnostics but frequently genetic material in those samples is highly degraded. With locus-specific methylation changes being widely investigated for use as biomarkers in various aspects of clinical disease management, we aimed to evaluate to what extent standard laboratory procedures can approximate the quality of the DNA extracted from FFPE samples prior to methylation analyses. DNA quality in 107 FFPE non-small cell lung cancer (NSCLC) samples was evaluated using spectrophotometry and gel electrophoresis. Subsequently, the quality assessment results were correlated with the results of locus specific methylation assessment with methylation sensitive high resolution melting (MS-HRM). The correlation of template quality with PCR amplification performance and HRM based methylation detection indicated a significant influence of DNA quality on PCR amplification but not on methylation assessment. In conclusion, standard laboratory procedures fairly well approximate DNA degradation of FFPE samples and DNA degradation does not seem to considerably affect locus-specific methylation assessment by MS-HRM.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Metilação de DNA/genética , DNA de Neoplasias/análise , Técnicas Genéticas , Neoplasias Pulmonares/genética , DNA de Neoplasias/metabolismo , Formaldeído , Humanos , Inclusão em Parafina , Reação em Cadeia da Polimerase , Fixação de Tecidos
10.
Breast Cancer Res ; 16(1): R17, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24490656

RESUMO

INTRODUCTION: Despite similar clinical and pathological features, large numbers of breast cancer patients experience different outcomes of the disease. This, together with the fact that the incidence of breast cancer is growing worldwide, emphasizes an urgent need for identification of new biomarkers for early cancer detection and stratification of patients. METHODS: We used ultrahigh-resolution microarrays to compare genomewide methylation patterns of breast carcinomas (n = 20) and nonmalignant breast tissue (n = 5). Biomarker properties of a subset of discovered differentially methylated regions (DMRs) were validated using methylation-sensitive high-resolution melting (MS-HRM) in a case-control study on a panel of breast carcinomas (n = 275) and non-malignant controls (n = 74). RESULTS: On the basis of microarray results, we selected 19 DMRs for large-scale screening of cases and controls. Analysis of the screening results showed that all DMRs tested displayed significant gains of methylation in the cancer tissue compared to the levels in control tissue. Interestingly, we observed two types of locus-specific methylation, with loci undergoing either predominantly full or heterogeneous methylation during carcinogenesis. Almost all tested DMRs (17 of 19) displayed low-level methylation in nonmalignant breast tissue, independently of locus-specific methylation patterns in cases. CONCLUSIONS: Specific loci can undergo either heterogeneous or full methylation during carcinogenesis, and loci hypermethylated in cancer frequently show low-level methylation in nonmalignant tissue.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metilação de DNA/genética , Sequência de Bases , Estudos de Casos e Controles , Ilhas de CpG/genética , Epigênese Genética , Feminino , Humanos , Análise de Sequência de DNA , Análise Serial de Tecidos
11.
Breast Cancer Res Treat ; 148(3): 615-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25376744

RESUMO

It has been proposed that methylation signatures in blood-derived DNA may correlate with cancer risk. In this study, we evaluated whether methylation of the promoter region of the BRCA1 gene detectable in DNA from peripheral blood cells is a risk factor for breast cancer, in particular for tumors with pathologic features characteristic for cancers with BRCA1 gene mutations. We conducted a case-control study of 66 breast cancer cases and 36 unaffected controls. Cases were triple-negative or of medullary histology, or both; 30 carried a constitutional BRCA1 mutation and 36 did not carry a mutation. Blood for DNA methylation analysis was taken within three months of diagnosis. Methylation of the promoter of the BRCA1 gene was measured in cases and controls using methylation-sensitive high-resolution melting (MS-HRM). A sample with any detectable level of methylation was considered to be positive. Methylation of the BRCA1 promoter was detected in 15 of 66 cases and in 2 of 36 controls (OR 5.0, p = 0.03). Methylation was present in 15 of 36 women with breast cancer and without germline BRCA1 mutation, but in none of 30 women with breast cancer and a germline mutation (p < 0.01). The association between methylation and breast cancer was restricted to women with no constitutional BRCA1 mutation (OR 12.1, p = 0.0006). Methylation of the promoter of the BRCA1 gene detectable in peripheral blood DNA may be a marker of increased susceptibility to triple-negative or medullary breast cancer.


Assuntos
Proteína BRCA1/genética , Carcinoma Medular/genética , Metilação de DNA/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Proteína BRCA1/sangue , Carcinoma Medular/sangue , Carcinoma Medular/patologia , Estudos de Casos e Controles , DNA-Citosina Metilases/genética , Feminino , Mutação em Linhagem Germinativa , Humanos , Regiões Promotoras Genéticas , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/patologia
12.
J Pain Res ; 16: 4025-4036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054109

RESUMO

Purpose: Fibromyalgia (FM) and Chronic Fatigue Syndrome (CFS) affect 0.4% and 1% of society, respectively, and the prevalence of these pain syndromes is increasing. To date, no strong association between these syndromes and the genetic background of affected individuals has been shown. Therefore, it is plausible that epigenetic changes might play a role in the development of these syndromes. Patients and Methods: Three previous studies have attempted to elaborate the involvement of genome-wide methylation changes in blood cells in the development of fibromyalgia and chronic fatigue syndrome. These studies included 22 patients with fibromyalgia and 127 patients with CFS, and the results of the studies were largely discrepant. Contradicting results of those studies may be attributed to differences in the omics data analysis approaches used in each study. We reanalyzed the data collected in these studies using an updated and coherent data-analysis framework. Results: Overall, the methylation changes that we observed overlapped with previous results only to some extent. However, the gene set enrichment analyses based on genes annotated to methylation changes identified in each of the analyzed datasets were surprisingly coherent and uniformly associated with the physiological processes that, when affected, may result in symptoms characteristic of fibromyalgia and chronic fatigue syndrome. Conclusion: Methylomes of the blood cells of patients with FM and CFS in three independent studies have shown methylation changes that appear to be implicated in the pathogenesis of these syndromes.

13.
Comput Struct Biotechnol J ; 21: 5446-5450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022697

RESUMO

Publicly available repositories such as Genomic Data Commons or Gene Expression Omnibus are a valuable research resource useful for hypothesis driven research as well as validation of the results of new experiments. Frequently however, the use of those opulent resources is challenging because advanced computational skills are required to mine deposited data. To address this challenge, we have developed eDAVE, a user-friendly, web and desktop interface enabling intuitive and robust analysis of almost 12 000 methylomes and transcriptomes from over 200 types of cells and tissues deposited in the Genomic Data Commons repository. The application is implemented in Python, supported for major browsers and available at: https://edave.pum.edu.pl/.

14.
Sci Rep ; 13(1): 16102, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752189

RESUMO

Recent reports based on a substantial number of cases, warrant need for population-based research to determine implications of constitutional methylation of tumor suppressor genes such as BRCA1 occurring in healthy tissue in the prediction of cancer. However, the detection of the constitutional methylation in DNA extracted from blood has already been shown to be technologically challenging, mainly because epimutations appear to be present in blood at a very low level. The analytical sensitivity required for low-level methylation detection can be provided by NGS, but this technique is still labor and cost-intensive. We assessed if PCR-based MS-HRM and BeadChip microarray technologies, which are standardized and cost-effective technologies for methylation changes screening, provide a sufficient level of analytical sensitivity for constitutional BRCA1 methylation detection in blood samples. The study included whole blood samples from 67 healthy women, 35 with previously confirmed and 32 with no detectable BRCA1 promoter methylation for which we performed both MS-HRM based BRCA1 gene methylation screening and genome wide methylation profiling with EPIC microarray. Our results shown, that low-level BRCA1 methylation can be effectively detected in DNA extracted from blood by PCR-based MS-HRM. At the same time, EPIC microarray does not provide conclusive results to unambiguously determine the presence of BRCA1 constitutional methylation in MS-HRM epimutation positive samples. The analytical sensitivity of MS-HRM is sufficient to detect low level BRCA1 constitutional epimutation in DNA extracted from blood and BeadChip technology-based microarrays appear not to provide that level of analytical sensitivity.


Assuntos
Genes BRCA1 , Trabalho de Parto , Feminino , Humanos , Gravidez , Projetos de Pesquisa , Perfil Genético , Nível de Saúde , Proteína BRCA1/genética
15.
Genes (Basel) ; 13(8)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36011328

RESUMO

Pyrosequencing is one of the technologies widely used for quantitative methylation assessment. The protocol of pyrosequencing experiment consists of PCR amplification of a locus of interest and subsequent sequencing via synthesis of the amplified PCR product. As the PCR in this protocol utilizes one primer set for the amplification of a template originating from both methylated and non-methylated versions of the analysed locus, the unequal amplification of one of the templates may affect the methylation level assessment by pyrosequencing. We have investigated whether the unequal amplification of one of the templates challenges the quantitative properties of the pyrosequencing technology. Our results show that the sensitivity and dynamic range of pyrosequencing can be significantly affected by unequal amplification of the methylated and non-methylated version of the locus of interest in an assay specific manner. Thus, the assessment of the effect of unequal template amplification on the performances of the specific pyrosequencing assay is necessary before using the assay either in research or especially in diagnostic settings.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase/métodos
16.
Folia Neuropathol ; 60(2): 137-152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35950467

RESUMO

The 5th edition of World Health Organization (WHO) Central Nervous System (CNS) tumours classification has transformed the pathological diagnosis of gliomas from purely histological to the multilayered integrated one with molecular biomarkers necessary for proper classification, risk stratification, and prognostic-predictive clinical purposes. Because of deep and important changes in taxonomy and diagnostic approach to gliomas, this manuscript is a review of WHO CNS classification 5th edition with general testing guidance for pathologists and clinicians working in neuro-oncology.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/patologia , Glioma/diagnóstico , Glioma/patologia , Humanos , Patologistas , Prognóstico , Organização Mundial da Saúde
17.
PLoS One ; 17(9): e0273058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36067175

RESUMO

Testing for disease-related DNA methylation changes provides clinically relevant information in personalized patient care. Methylation-Sensitive High-Resolution Melting (MS-HRM) is a method used for measuring methylation changes and has already been used in diagnostic settings. This method utilizes one set of primers that initiate the amplification of both methylated and non-methylated templates. Therefore, the quantification of the methylation levels using MS-HRM is hampered by the PCR bias phenomenon. Some approaches have been proposed to calculate the methylation level of samples using the high-resolution melting (HRM) curves. However, limitations of the methylation calculation using MS-HRM have not been evaluated systematically and comprehensively. We used the Area Under the Curve (AUC), a derivative of the HRM curves, and least square approximation (LSA) to establish a procedure that allowed us to infer methylation levels in an MS-HRM experiment and assess the limitations of that procedure for the assays' specific methylation level measurement. The developed procedure allowed, with certain limitations, estimation of the methylation levels using HRM curves.


Assuntos
Metilação de DNA , Primers do DNA , Humanos , Reação em Cadeia da Polimerase/métodos
18.
Cancers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884461

RESUMO

Bortezomib (BTZ) is proteasome inhibitor, effectively used in the treatment of multiple myeloma, but frequently discontinued due to peripheral neuropathy, which develops in patients after consecutive treatment cycles. The molecular mechanisms affected by BTZ in neuronal cells, which result in neuropathy, remain unknown. However, BTZ is unlikely to lead to permanent morphological nerve damage, because neuropathy reverses after discontinuation of treatment, and nerve cells have very limited renewal capacity. We have previously shown that BTZ induces methylation changes in SH-SY5Y cells, which take part in the development of treatment resistance. Here, we hypothesized that BTZ affects the methylomes of mature neurons, and these changes are associated with BTZ neurotoxicity. Thus, we studied methylomes of neuronal cells, differentiated from the LUHMES cell line, after cycles of treatment with BTZ. Our results show that BTZ induces specific methylation changes in mature neurons, which are not present in SH-SY5Y cells after BTZ treatment. These changes appear to affect genes involved in morphogenesis, neurogenesis, and neurotransmission. Furthermore, identified methylation changes are significantly enriched within binding sites of transcription factors previously linked to neuron physiology, including EBF, PAX, DLX, LHX, and HNF family members. Altogether, our results indicate that methylation changes are likely to be involved in BTZ neurotoxicity.

19.
Biomed Pharmacother ; 153: 113396, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076479

RESUMO

Recent studies have shown that methylation changes identified in blood cells of COVID-19 patients have a potential to be used as biomarkers of SARS-CoV-2 infection outcomes. However, different studies have reported different subsets of epigenetic lesions that stratify patients according to the severity of infection symptoms, and more importantly, the significance of those epigenetic changes in the pathology of the infection is still not clear. We used methylomics and transcriptomics data from the largest so far cohort of COVID-19 patients from four geographically distant populations, to identify casual interactions of blood cells' methylome in pathology of the COVID-19 disease. We identified a subset of methylation changes that is uniformly present in all COVID-19 patients regardless of symptoms. Those changes are not present in patients suffering from upper respiratory tract infections with symptoms similar to COVID-19. Most importantly, the identified epigenetic changes affect the expression of genes involved in interferon response pathways and the expression of those genes differs between patients admitted to intensive care units and only hospitalized. In conclusion, the DNA methylation changes involved in pathophysiology of SARS-CoV-2 infection, which are specific to COVID-19 patients, can not only be utilized as biomarkers in the disease management but also present a potential treatment target.


Assuntos
COVID-19 , Biomarcadores , COVID-19/genética , COVID-19/imunologia , Epigênese Genética , Humanos , Interferons/genética , Interferons/imunologia , SARS-CoV-2
20.
Clin Epigenetics ; 14(1): 157, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447285

RESUMO

BACKGROUND: High caloric diet and lack of physical activity are considered main causes of NAFLD, and a change in the diet is still the only effective treatment of this disease. However, molecular mechanism of the effectiveness of diet change in treatment of NAFLD is poorly understood. We aimed to assess the involvement of epigenetic mechanisms of gene expression regulation in treatment of NAFLD. Eighteen participants with medium- to high-grade steatosis were recruited and trained to follow the Mediterranean diet modified to include fibre supplements. At three timepoints (baseline, after 30 and 60 days), we evaluated adherence to the diet and measured a number of physiological parameters such as anthropometry, blood and stool biochemistry, liver steatosis and stiffness. We also collected whole blood samples for genome-wide methylation profiling and histone acetylation assessment. RESULTS: The diet change resulted in a decrease in liver steatosis along with statistically significant, but a minor change in BMI and weight of our study participants. The epigenetic profiling of blood cells identified significant genome-wide changes of methylation and acetylation with the former not involving regions directly regulating gene expression. Most importantly, we were able to show that identified blood methylation changes occur also in liver cells of NAFLD patients and the machine learning-based classifier that we build on those methylation changes was able to predict the stage of liver fibrosis with ROC AUC = 0.9834. CONCLUSION: Methylomes of blood cells from NAFLD patients display a number of changes that are most likely a consequence of unhealthy diet, and the diet change appears to reverse those epigenetic changes. Moreover, the methylation status at CpG sites undergoing diet-related methylation change in blood cells stratifies liver biopsies from NAFLD patients according to fibrosis grade.


Assuntos
Dieta Mediterrânea , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Metilação de DNA , Biópsia , Cirrose Hepática/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA