Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(7): 3709-3724, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733306

RESUMO

Guanine (G)-rich single-stranded nucleic acids can adopt G-quadruplex structures. Accumulating evidence indicates that G-quadruplexes serve important regulatory roles in fundamental biological processes such as DNA replication, transcription, and translation, while aberrant G-quadruplex formation is linked to genome instability and cancer. Understanding the biological functions played by G-quadruplexes requires detailed knowledge of their protein interactome. Here, we report that both RNA and DNA G-quadruplexes are bound by human Dicer in vitro. Using in vitro binding assays, mutation studies, and computational modeling we demonstrate that G-quadruplexes can interact with the Platform-PAZ-Connector helix cassette of Dicer, the region responsible for anchoring microRNA precursors (pre-miRNAs). Consequently, we show that G-quadruplexes efficiently and stably inhibit the cleavage of pre-miRNA by Dicer. Our data highlight the potential of human Dicer for binding of G-quadruplexes and allow us to propose a G-quadruplex-driven sequestration mechanism of Dicer regulation.


Assuntos
RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/genética , DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Quadruplex G , MicroRNAs/metabolismo , RNA/metabolismo , Ribonuclease III/antagonistas & inibidores , Ribonuclease III/genética , RNA Helicases DEAD-box/metabolismo , DNA/química , DNA/genética , Inibidores Enzimáticos/química , Humanos , MicroRNAs/genética , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , RNA/genética , Ribonuclease III/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35409004

RESUMO

tRNA-derived fragments participate in the regulation of many processes, such as gene silencing, splicing and translation in many organisms, ranging from bacteria to humans. We were interested to know how tRF abundance changes during the different stages of renal cell development. The research model used here consisted of the following human renal cells: hESCs, HEK-293T, HK-2 and A-489 kidney tumor cells, which, together, mimic the different stages of kidney development. The characteristics of the most abundant tRFs, tRFGly(CCC), tRFVal(AAC) and tRFArg(CCU), were presented. It was found that these parental tRNAs present in cells are the source of many tRFs, thus increasing the pool of potential regulatory RNAs. Indeed, a bioinformatic analysis showed the possibility that tRFGly(CCC) and tRRFVal(AAC) could regulate the activity of a range of kidney proteins. Moreover, the distribution of tRFs and the efficiency of their expression is similar in adult and embryonic stem cells. During the formation of tRFs, HK-2 cells resemble A-498 cancer cells more than other cells. Additionally, we postulate the involvement of Dicer nuclease in the formation of tRF-5b in all the analyzed tRNAs. To confirm this, 293T NoDice cells, which in the absence of Dicer activity do not generate tRF-5b, were used.


Assuntos
Biologia Computacional , RNA de Transferência , Adulto , Humanos , Rim/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
3.
Cell Mol Life Sci ; 77(16): 3231-3244, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31655860

RESUMO

The ribonuclease Dicer produces microRNAs (miRNAs) and small interfering RNAs that are handed over to Ago proteins to control gene expression by targeting complementary sequences within transcripts. Interestingly, a growing number of reports have demonstrated that the activity of Dicer may extend beyond the biogenesis of small regulatory RNAs. Among them, a report from our latest studies revealed that human Dicer facilitates base pairing of complementary sequences present in two nucleic acids, thus acting as a nucleic acid annealer. Accordingly, in this manuscript, we address how RNA structure influences the annealing activity of human Dicer. We show that Dicer supports hybridization between a small RNA and a complementary sequence of a longer RNA in vitro, even when both complementary sequences are trapped within secondary structures. Moreover, we show that under applied conditions, human Ago2, a core component of RNA-induced silencing complex, displays very limited annealing activity. Based on the available data from new-generation sequencing experiments regarding the RNA pool bound to Dicer in vivo, we show that multiple Dicer-binding sites within mRNAs also contain miRNA targets. Subsequently, we demonstrate in vitro that Dicer but not Ago2 can anneal miRNA to its target present within mRNA. We hypothesize that not all miRNA duplexes are handed over to Ago proteins. Instead, miRNA-Dicer complexes could target specific sequences within transcripts and either compete or cooperate for binding sites with miRNA-Ago complexes. Thus, not only Ago but also Dicer might be directly involved in the posttranscriptional control of gene expression.


Assuntos
Proteínas Argonautas/genética , Pareamento de Bases/genética , RNA Helicases DEAD-box/genética , RNA/genética , Ribonuclease III/genética , Regulação da Expressão Gênica/genética , Humanos , Ligação Proteica/genética , Complexo de Inativação Induzido por RNA/genética
4.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445396

RESUMO

Dicers are multidomain proteins, usually comprising an amino-terminal putative helicase domain, a DUF283 domain (domain of unknown function), a PAZ domain, two RNase III domains (RNase IIIa and RNase IIIb) and a dsRNA-binding domain. Dicer homologs play an important role in the biogenesis of small regulatory RNAs by cleaving single-stranded precursors adopting stem-loop structures (pre-miRNAs) and double-strand RNAs into short RNA duplexes containing functional microRNAs or small interfering RNAs, respectively. Growing evidence shows that apart from the canonical role, Dicer proteins can serve a number of other functions. For example, results of our previous studies showed that human Dicer (hDicer), presumably through its DUF283 domain, can facilitate hybridization between two complementary RNAs, thus, acting as a nucleic acid annealer. Here, to test this assumption, we prepared a hDicer deletion variant lacking the amino acid residues 625-752 corresponding to the DUF283 domain. The respective 128-amino acid fragment of hDicer was earlier demonstrated to accelerate base-pairing between two complementary RNAs in vitro. We show that the ΔDUF(625-752) hDicer variant loses the potential to facilitate RNA-RNA base pairing, which strongly proves our hypothesis about the importance of the DUF283 domain for the RNA-RNA annealing activity of hDicer. Interestingly, the in vitro biochemical characterization of the obtained deletion variant reveals that it displays different RNA cleavage properties depending on the pre-miRNA substrate.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , RNA/metabolismo , Ribonuclease III/química , Ribonuclease III/metabolismo , Deleção de Sequência , Pareamento de Bases , RNA Helicases DEAD-box/genética , Células HEK293 , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Domínios Proteicos , RNA/química , Ribonuclease III/genética
5.
Molecules ; 25(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244942

RESUMO

The Dicer ribonuclease plays a crucial role in the biogenesis of small regulatory RNAs (srRNAs) by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. Dicer-generated srRNAs can control gene expression by targeting complementary transcripts and repressing their translation or inducing their cleavage. Human Dicer (hDicer) is a multidomain enzyme comprising a putative helicase domain, a DUF283 domain, platform, a PAZ domain, a connector helix, two RNase III domains (RNase IIIa and RNase IIIb) and a dsRNA-binding domain. Specific, ~20-base pair siRNA or miRNA duplexes with 2 nucleotide (nt) 3'-overhangs are generated by Dicer when an RNA substrate is anchored within the platform-PAZ-connector helix (PPC) region. However, increasing number of reports indicate that in the absence of the PAZ domain, binding of RNA substrates can occur by other Dicer domains. Interestingly, truncated variants of Dicer, lacking the PPC region, have been found to display a DNase activity. Inspired by these findings, we investigated how the lack of the PAZ domain, or the entire PPC region, would influence the cleavage activity of hDicer. Using immunopurified 3xFlag-hDicer produced in human cells and its two variants: one lacking the PAZ domain, and the other lacking the entire PPC region, we show that the PAZ domain deletion variants of hDicer are not able to process a pre-miRNA substrate, a dsRNA with 2-nt 3'-overhangs, and a blunt-ended dsRNA. However, the PAZ deletion variants exhibit both RNase and DNase activity on short single-stranded RNA and DNAs, respectively. Collectively, our results indicate that when the PAZ domain is absent, other hDicer domains may contribute to substrate binding and in this case, non-canonical products can be generated.


Assuntos
RNA Helicases DEAD-box/metabolismo , Ribonuclease III/metabolismo , Sítios de Ligação , Linhagem Celular , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Ativação Enzimática , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Ribonuclease III/química , Ribonuclease III/genética , Deleção de Sequência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA