Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(15): 3938-43, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035935

RESUMO

The negatively charged nitrogen vacancy (NV(-)) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV(-) state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.


Assuntos
Fluorescência , Nanodiamantes/química , Nitrogênio/química , Eletricidade Estática , Condutividade Elétrica , Técnicas Eletroquímicas
2.
ACS Appl Mater Interfaces ; 16(28): 37226-37233, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976775

RESUMO

Thanks to its low or negative surface electron affinity and chemical inertness, diamond is attracting broad attention as a source material of solvated electrons produced by optical excitation of the solid-liquid interface. Unfortunately, its wide bandgap typically imposes the use of wavelengths in the ultraviolet range, hence complicating practical applications. Here, we probe the photocurrent response of water surrounded by single-crystal diamond surfaces engineered to host shallow nitrogen-vacancy (NV) centers. We observe clear signatures of diamond-induced photocurrent generation throughout the visible range and for wavelengths reaching up to 594 nm. Experiments as a function of laser power suggest that NV centers and other coexisting defects─likely in the form of surface traps─contribute to carrier injection, though we find that NVs dominate the system response in the limit of high illumination intensities. Given our growing understanding of near-surface NV centers and adjacent point defects, these results open new perspectives in the application of diamond-liquid interfaces to photocarrier-initiated chemical and spin processes in fluids.

3.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39120380

RESUMO

Diamond as a templating substrate is largely unexplored, and the unique properties of diamond, including its large bandgap, thermal conductance, and lack of cytotoxicity, makes it versatile in emergent technologies in medicine and quantum sensing. Surface termination of an inert diamond substrate and its chemical reactivity are key in generating new bonds for nucleation and growth of an overlayer material. Oxidized high-pressure high temperature (HPHT) nanodiamonds (NDs) are largely terminated by alcohols that act as nucleophiles to initiate covalent bond formation when an electrophilic reactant is available. In this work, we demonstrate a templated synthesis of ultrathin boron on ND surfaces using trigonal boron compounds. Boron trichloride (BCl3), boron tribromide (BBr3), and borane (BH3) were found to react with ND substrates at room temperature in inert conditions. BBr3 and BCl3 were highly reactive with the diamond surface, and sheet-like structures were produced and verified with electron microscopy. Surface-sensitive spectroscopies were used to probe the molecular and atomic structure of the ND constructs' surface, and quantification showed the boron shell was less than 1 nm thick after 1-24 h reactions. Observation of the reaction supports a self-terminating mechanism, similar to atomic layer deposition growth, and is likely due to the quenching of alcohols on the diamond surface. X-ray absorption spectroscopy revealed that boron-termination generated midgap electronic states that were originally predicted by density functional theory (DFT) several years ago. DFT also predicted a negative electron surface, which has yet to be confirmed experimentally here. The boron-diamond nanostructures were found to aggregate in dichloromethane and were dispersed in various solvents and characterized with dynamic light scattering for future cell imaging or cancer therapy applications using boron neutron capture therapy (BNCT). The unique templating mechanism based on nucleophilic alcohols and electrophilic trigonal precursors allows for covalent bond formation and will be of interest to researchers using diamond for quantum sensing, additive manufacturing, BNCT, and potentially as an electron emitter.

4.
Nano Lett ; 12(6): 2763-7, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22594309

RESUMO

X-ray absorption spectroscopy and ab initio modeling of the experimental spectra have been used to investigate the effects of surface passivation on the unoccupied electronic states of CdSe quantum dots (QDs). Significant differences are observed in the unoccupied electronic structure of the CdSe QDs, which are shown to arise from variations in specific ligand-surface bonding interactions.


Assuntos
Compostos de Cádmio/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pontos Quânticos , Compostos de Selênio/química , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Ligantes
5.
ACS Nanosci Au ; 3(6): 462-474, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38144705

RESUMO

Surface chemistry of materials that host quantum bits such as diamond is an important avenue of exploration as quantum computation and quantum sensing platforms mature. Interfacing diamond in general and nanoscale diamond (ND) in particular with silica is a potential route to integrate room temperature quantum bits into photonic devices, fiber optics, cells, or tissues with flexible functionalization chemistry. While silica growth on ND cores has been used successfully for quantum sensing and biolabeling, the surface mechanism to initiate growth was unknown. This report describes the surface chemistry responsible for silica bond formation on diamond and uses X-ray absorption spectroscopy (XAS) to probe the diamond surface chemistry and its electronic structure with increasing silica thickness. A modified Stöber (Cigler) method was used to synthesize 2-35 nm thick shells of SiO2 onto carboxylic acid-rich ND cores. The diamond morphology, surface, and electronic structure were characterized by overlapping techniques including electron microscopy. Importantly, we discovered that SiO2 growth on carboxylated NDs eliminates the presence of carboxylic acids and that basic ethanolic solutions convert the ND surface to an alcohol-rich surface prior to silica growth. The data supports a mechanism that alcohols on the ND surface generate silyl-ether (ND-O-Si-(OH)3) bonds due to rehydroxylation by ammonium hydroxide in ethanol. The suppression of the diamond electronic structure as a function of SiO2 thickness was observed for the first time, and a maximum probing depth of ∼14 nm was calculated. XAS spectra based on the Auger electron escape depth was modeled using the NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to support our experimental results. Additionally, resonant inelastic X-ray scattering (RIXS) maps produced by the transition edge sensor reinforces the chemical analysis provided by XAS. Researchers using diamond or high-pressure high temperature (HPHT) NDs and other exotic materials (e.g., silicon carbide or cubic-boron nitride) for quantum sensing applications may exploit these results to design new layered or core-shell quantum sensors by forming covalent bonds via surface alcohol groups.

6.
J Phys Chem Lett ; 13(4): 1147-1158, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084184

RESUMO

Bromination of high-pressure, high-temperature (HPHT) nanodiamond (ND) surfaces has not been explored and can open new avenues for increased chemical reactivity and diamond lattice covalent bond formation. The large bond dissociation energy of the diamond lattice-oxygen bond is a challenge that prevents new bonds from forming, and most researchers simply use oxygen-terminated NDs (alcohols and acids) as reactive species. In this work, we transformed a tertiary-alcohol-rich ND surface to an amine surface with ∼50% surface coverage and was limited by the initial rate of bromination. We observed that alkyl bromide moieties are highly labile on HPHT NDs and are metastable as previously found using density functional theory. The strong leaving group properties of the alkyl bromide intermediate were found to form diamond-nitrogen bonds at room temperature and without catalysts. This robust pathway to activate a chemically inert ND surface broadens the modalities for surface termination, and the unique surface properties of brominated and aminated NDs are impactful to researchers for chemically tuning diamond for quantum sensing or biolabeling applications.

7.
Nano Lett ; 9(6): 2331-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19449878

RESUMO

We report the rational synthesis of nitrogen-doped zinc oxide (ZnO:N) nanowire arrays, and their implementation as photoanodes in photoelectrochemical (PEC) cells for hydrogen generation from water splitting. Dense and vertically aligned ZnO nanowires were first prepared from a hydrothermal method, followed by annealing in ammonia to incorporate N as a dopant. Nanowires with a controlled N concentration (atomic ratio of N to Zn) up to approximately 4% were prepared by varying the annealing time. X-ray photoelectron spectroscopy studies confirm N substitution at O sites in ZnO nanowires up to approximately 4%. Incident-photon-to-current-efficiency measurements carried out on PEC cell with ZnO:N nanowire arrays as photoanodes demonstrate a significant increase of photoresponse in the visible region compared to undoped ZnO nanowires prepared at similar conditions. Mott-Schottky measurements on a representative 3.7% ZnO:N sample give a flat-band potential of -0.58 V, a carrier density of approximately 4.6 x 10(18) cm(-3), and a space-charge layer of approximately 22 nm. Upon illumination at a power density of 100 mW/cm(2) (AM 1.5), water splitting is observed in both ZnO and ZnO:N nanowires. In comparison to ZnO nanowires without N-doping, ZnO:N nanowires show an order of magnitude increase in photocurrent density with photo-to-hydrogen conversion efficiency of 0.15% at an applied potential of +0.5 V (versus Ag/AgCl). These results suggest substantial potential of metal oxide nanowire arrays with controlled doping in PEC water splitting applications.


Assuntos
Nanofios/química , Nitrogênio/química , Fotólise , Água/química , Óxido de Zinco/química
8.
Small ; 5(1): 104-11, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19040214

RESUMO

Dense and aligned TiO2 nanorod arrays are fabricated using oblique-angle deposition on indium tin oxide (ITO) conducting substrates. The TiO2 nanorods are measured to be 800-1100 nm in length and 45-400 nm in width with an anatase crystal phase. Coverage of the ITO is extremely high with 25 x 10(6) mm(-2) of the TiO2 nanorods. The first use of these dense TiO2 nanorod arrays as working electrodes in photoelectrochemical (PEC) cells used for the generation of hydrogen by water splitting is demonstrated. A number of experimental techniques including UV/Vis absorption spectroscopy, X-ray diffraction, high-resolution scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectrochemistry are used to characterize their structural, optical, and electronic properties. Both UV/Vis and incident-photon-to-current-efficiency measurements show their photoresponse in the visible is limited but with a marked increase around approximately 400 nm. Mott-Schottky measurements give a flat-band potential (V(FB)) of +0.20 V, a carrier density of 4.5 x 10(17) cm(-3), and a space-charge layer of 99 nm. Overall water splitting is observed with an applied overpotential at 1.0 V (versus Ag/AgCl) with a photo-to-hydrogen efficiency of 0.1%. The results suggest that these dense and aligned one-dimensional TiO2 nanostructures are promising for hydrogen generation from water splitting based on PEC cells.


Assuntos
Nanotubos/química , Titânio/química , Água/química , Técnicas Eletroquímicas , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Microscopia Eletrônica de Varredura , Processos Fotoquímicos , Temperatura , Difração de Raios X
9.
J Phys Chem B ; 110(50): 25288-96, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17165974

RESUMO

Metal oxide nanostructures hold great potential for photovoltaic (PV), photoelectrochemical (PEC), and photocatalytic applications. Whereas thin films of various materials of both nanoparticle and nanorod morphologies have been widely investigated, there have been few inquiries into nanodisk structures. Here, we report the synthesis of ultrathin WO3 nanodisks using a wet chemical route with poly(ethylene glycol) (PEG) as a surface modulator. The reported nanodisk structure is based on the interaction of the nonionic 10000 g/mol PEG molecules with tungsten oxoanion precursors. The WO3 nanostructures formed are dominated by very thin disks with dimensions on the nanometer to micrometer scale. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images reveal the structures to have dimensions on the order of 350-1000 nm in length, 200-750 nm in width, and 7-18 nm in thickness and possessing textured single-crystalline features. A number of analytical techniques were used to characterize the WO3 nanodisks, including selected-area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), Raman scattering spectroscopy, UV-visible spectrophotometry, and cyclic voltammetry (CV). The growth of the WO3 nanodisks was inhibited in the [010] crystal direction, leading to ultrathin morphologies in the monoclinic crystal phase. The large flat surface area and high aspect ratio of the WO3 nanodisks are potentially useful in PEC cells for hydrogen production via direct water splitting, as has been demonstrated in a preliminary experiment with external bias.


Assuntos
Membranas Artificiais , Nanoestruturas/química , Óxidos/química , Óxidos/síntese química , Polietilenoglicóis/química , Tungstênio/química , Eletroquímica , Nanotecnologia/métodos , Tamanho da Partícula , Fotoquímica , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta , Propriedades de Superfície , Difração de Raios X
10.
J Phys Chem B ; 110(11): 5779-89, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16539525

RESUMO

Quantum dots (QDs) have been increasingly used in biolabeling recently as their advantages over molecular fluorophores have become clear. For bioapplications QDs must be water-soluble and buffer stable, making their synthesis challenging and time-consuming. A simple aqueous synthesis of silica-capped, highly fluorescent CdTe quantum dots has been developed. CdTe QDs are advantageous as the emission can be tuned to the near-infrared where tissue absorption is at a minimum, while the silica shell can prevent the leakage of toxic Cd(2+) and provide a surface for easy conjugation to biomolecules such as proteins. The presence of a silica shell of 2-5 nm in thickness has been confirmed by transmission electron microscopy and atomic force microscopy measurements. Photoluminescence studies show that the silica shell results in greatly increased photostability in Tris-borate-ethylenediaminetetraacetate and phosphate-buffered saline buffers. To further improve their biocompatibility, the silica-capped QDs have been functionalized with poly(ethylene glycol) and thiol-terminated biolinkers. Through the use of these linkers, antibody proteins were successfully conjugated as confirmed by agarose gel electrophoresis. Streptavidin-maleimide and biotinylated polystyrene microbeads confirmed the bioactivity and conjugation specificity of the thiolated QDs. These functionalized, silica-capped QDs are ideal labels, easily synthesized, robust, safe, and readily conjugated to biomolecules while maintaining bioactivity. They are potentially useful for a number of applications in biolabeling and imaging.


Assuntos
Compostos de Cádmio/química , Imunoglobulina G/química , Nanotecnologia/métodos , Pontos Quânticos , Dióxido de Silício/química , Compostos de Sulfidrila/química , Telúrio/química , Biotinilação , Ácidos Bóricos/química , Compostos de Cádmio/síntese química , Ácido Edético/química , Eletroforese em Gel de Ágar , Imunoglobulina G/metabolismo , Maleimidas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Polietilenoglicóis/química , Poliestirenos/química , Cloreto de Sódio/química , Solubilidade , Estreptavidina/química , Propriedades de Superfície , Trometamina/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA