Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cardiol ; 393: 131405, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37777071

RESUMO

BACKGROUND: RASopathies account for nearly 20% of cases of childhood hypertrophic cardiomyopathy (HCM). Sudden cardiac death (SCD) occurs in patients with RASopathy-associated HCM, but the risk factors for SCD have not been systematically evaluated. AIM: To validate the HCM Risk-Kids SCD risk prediction model in children with RASopathy-associated HCM and investigate potential specific SCD predictors in this population. METHODS: Validation of HCM Risk-Kids was performed in a retrospective cohort of 169 patients with a RASopathy-associated HCM from 15 international paediatric cardiology centres. Multiple imputation by chained equations was used for missing values related to the HCM Risk-Kids parameters. RESULTS: Eleven patients (6.5%) experienced a SCD or equivalent event at a median age of 12.5 months (IQR 7.7-28.64). The calculated SCD/equivalent event incidence was 0.78 (95% CI 0.43-1.41) per 100 patient years. Six patients (54.54%) with an event were in the low-risk category according to the HCM Risk-Kids model. Harrell's C index was 0.60, with a sensitivity of 9.09%, specificity of 63.92%, positive predictive value of 1.72%, and negative predictive value of 91%; with a poor distinction between the different risk groups. Unexplained syncope (HR 42.17, 95% CI 10.49-169.56, p < 0.001) and non-sustained ventricular tachycardia (HR 5.48, 95% CI 1.58-19.03, p < 0.007) were predictors of SCD on univariate analysis. CONCLUSION: Unexplained syncope and the presence of NSVT emerge as predictors for SCD in children with RASopathy-associated HCM. The HCM Risk-Kids model may not be appropriate to use in this population, but larger multicentre collaborative studies are required to investigate this further.


Assuntos
Cardiomiopatia Hipertrófica , Morte Súbita Cardíaca , Criança , Humanos , Lactente , Pré-Escolar , Estudos Retrospectivos , Fatores de Risco , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/diagnóstico , Síncope , Medição de Risco
2.
J Cardiovasc Dev Dis ; 9(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35200695

RESUMO

(1) Background: In cardiomyopathies, identification of genetic variants is important for the correct diagnosis and impacts family cascade screening. A classification system was published by the American College of Medical Genetics and Genomics (ACMG) in 2015 to standardize variants' classification. The aim of the study was to determine the rate of reclassification of previously identified variants in patients with childhood-onset cardiomyopathies. (2) Methods: Medical records of patients and their relatives were screened for clinical and genetic information at the Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich. Patients without an identified genetic variant were excluded from further analyses. Previously reported variants were reevaluated by the ACMG criteria in November 2021. (3) Results: Data from 167 patients or relatives of patients with childhood-onset cardiomyopathy from 137 families were analyzed. In total, 45 different genetic variants were identified in 71 individuals. Classification changed in 29% (13/45) with the greatest shift in "variants of unknown significance" to "(likely) benign" (9/13). (4) Conclusions: In patients with childhood-onset cardiomyopathies, nearly a third of reported genetic variants change mostly to more benign classes upon reclassification. Given the impact on patient management and cascade screening, this finding underlines the importance of continuous genetic counseling and variant.

3.
Cardiovasc Diagn Ther ; 11(6): 1295-1309, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35070799

RESUMO

BACKGROUND: Right ventricular impairment (RVI) secondary to altered hemodynamics contributes to morbidity and mortality in adult patients after tetralogy of Fallot (TOF) repair. The goal of this study was to describe signaling pathways contributing to right ventricular (RV) remodeling by analyzing over lifetime alterations of RV gene expression in affected patients. METHODS: RV tissue was collected at the time of cardiac surgery in 13 patients with a diagnosis of TOF. RNA was isolated and whole transcriptome sequencing was performed. Gene profiles were compared between a group of 6 adults with signs of RVI undergoing right ventricle to pulmonary artery conduit surgery and a group of 7 infants, undergoing TOF correction. Definition of RVI in adult patients was based on clinical symptoms, evidence of RV hypertrophy, dilation, dysfunction or elevated pressure on echocardiographic, cardiovascular magnetic resonance, or catheterization evaluation. RESULTS: Median age was 34 years in RVI patients and 5 months in infants. Based on P adjusted value <0.01, RNA sequencing of RV specimens identified a total of 3,010 differentially expressed genes in adult patients with TOF and RVI as compared to infant patients with TOF. Gene Ontology and Kyoto Encyclopedia of Genes databases highlighted pathways involved in cellular metabolism, cell-cell communication, cell cycling and cellular contractility to be dysregulated in adults with corrected TOF and chronic RVI. CONCLUSIONS: RV transcriptome profiling in adult patients with RVI after TOF repair allows identification of signaling pathways, contributing to pathologic RV remodeling and helps in the discovery of biomarkers for disease progression and of new therapeutic targets.

4.
Front Pediatr ; 8: 123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296665

RESUMO

Background: Survivors of childhood cancer are at risk for anthracycline- and/or radiotherapy-induced cardiotoxicity. Aims: The aim of this study was to assess clinical, laboratory, and imaging parameters of subclinical cardiovascular disease in childhood cancer survivors. Methods: Patients underwent cardiopulmonary exercise test (CPET), laboratory testing, transthoracic echocardiography (TTE) with tissue doppler imaging (TDI) and speckle tracking. A subset of patients also underwent cardiovascular magnetic resonance imaging (CMR). Findings were correlated to cumulative anthracycline and exposure to mediastinal irradiation during cancer treatment. In a subgroup analysis, TTE and CMR findings were compared to data from 40 gender- and age-matched patients with childhood onset hypertrophic cardiomyopathy (HCM). Results: Cardiac evaluation was performed in 79 patients (43 males) at 11.2 ± 4.5 years after cancer treatment. Oncologic diagnosis at a median age of 12.0 years was Hodgkin lymphoma in 20, sarcoma in 17, acute leukemia in 24, relapse leukemia in 10, and others in 8 patients. Cumulative anthracycline dose exceeded 300 mg/m2 in 28 patients. Twenty six patients also received mediastinal irradiation. Decreased peak respiratory oxygen uptake in % predicted on CPET, increased levels of N-terminal pro-brain natriuretic peptide (NTproBNP), increased global longitudinal strain on TTE speckle tracking, and diastolic dysfunction on TDI were the most prominent findings on detailed cardiology follow-up. In contrast to HCM patients, childhood cancer survivors did not show left ventricular hypertrophy (LVPWd z-score median 0.9 vs. 2.8, p < 0.001), hyperdynamic systolic function on TTE (Ejection fraction 62 ± 7 vs. 72 ± 12%, p = 0.001), or fibrotic myocardial changes on CMR (Late gadolinium positive 0/13 vs. 13/36, p = 0.001; extracellular volume fraction 22 ± 2 vs. 28 ± 3, p < 0.001) at time of follow-up. There was no correlation between chest radiation exposure and abnormal cardiac findings. Cumulative anthracycline dose was the only significant independent predictor on multivariate analysis for any cardiovascular abnormality on follow-up (p = 0.036). Conclusion: Increasing cumulative anthracycline dose during cancer treatment correlates with subclinical cardiac dysfunction in childhood cancer survivors best detected by elevated cardiac serum biomarkers, decreased exercise capacity on CPET, and abnormalities on echocardiographic speckle tracking and TDI.

5.
Cardiovasc Diagn Ther ; 9(Suppl 2): S388-S415, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31737545

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and defined by unexplained isolated progressive myocardial hypertrophy, systolic and diastolic ventricular dysfunction, arrhythmias, sudden cardiac death and histopathologic changes, such as myocyte disarray and myocardial fibrosis. Mutations in genes encoding for proteins of the contractile apparatus of the cardiomyocyte, such as ß-myosin heavy chain and myosin binding protein C, have been identified as cause of the disease. Disease is caused by altered biophysical properties of the cardiomyocyte, disturbed calcium handling, and abnormal cellular metabolism. Mutations in sarcomere genes can also activate other signaling pathways via transcriptional activation and can influence non-cardiac cells, such as fibroblasts. Additional environmental, genetic and epigenetic factors result in heterogeneous disease expression. The clinical course of the disease varies greatly with some patients presenting during childhood while others remain asymptomatic until late in life. Patients can present with either heart failure symptoms or the first symptom can be sudden death due to malignant ventricular arrhythmias. The morphological and pathological heterogeneity results in prognosis uncertainty and makes patient management challenging. Current standard therapeutic measures include the prevention of sudden death by prohibition of competitive sport participation and the implantation of cardioverter-defibrillators if indicated, as well as symptomatic heart failure therapies or cardiac transplantation. There exists no causal therapy for this monogenic autosomal-dominant inherited disorder, so that the focus of current management is on early identification of asymptomatic patients at risk through molecular diagnostic and clinical cascade screening of family members, optimal sudden death risk stratification, and timely initiation of preventative therapies to avoid disease progression to the irreversible adverse myocardial remodeling stage. Genetic diagnosis allowing identification of asymptomatic affected patients prior to clinical disease onset, new imaging technologies, and the establishment of international guidelines have optimized treatment and sudden death risk stratification lowering mortality dramatically within the last decade. However, a thorough understanding of underlying disease pathogenesis, regular clinical follow-up, family counseling, and preventative treatment is required to minimize morbidity and mortality of affected patients. This review summarizes current knowledge about molecular genetics and pathogenesis of HCM secondary to mutations in the sarcomere and provides an overview about current evidence and guidelines in clinical patient management. The overview will focus on clinical staging based on disease mechanism allowing timely initiation of preventative measures. An outlook about so far experimental treatments and potential for future therapies will be provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA