Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Annu Rev Biochem ; 87: 751-782, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29394096

RESUMO

Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin-proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina/metabolismo
2.
J Biol Chem ; 290(8): 4677-4687, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25564609

RESUMO

For the assembly of protein complexes in the cell, the presence of stoichiometric amounts of the respective protein subunits is of utmost importance. A surplus of any of the subunits may trigger unspecific and harmful protein interactions and has to be avoided. A stoichiometric amount of subunits must finally be reached via transcriptional, translational, and/or post-translational regulation. Synthesis of saturated 16 and 18 carbon fatty acids is carried out by fatty acid synthase: in yeast Saccharomyces cerevisiae, a 2.6-MDa molecular mass assembly containing six protomers each of two different subunits, Fas1 (ß) and Fas2 (α). The (α)6(ß)6 complex carries six copies of all eight enzymatic activities required for fatty acid synthesis. The FAS1 and FAS2 genes in yeast are unlinked and map on two different chromosomes. Here we study the fate of the α-subunit of the complex, Fas2, when its partner, the ß-subunit Fas1, is absent. Individual subunits of fatty acid synthase are proteolytically degraded when the respective partner is missing. Elimination of Fas2 is achieved by the proteasome. Here we show that a ubiquitin transfer machinery is required for Fas2 elimination. The major ubiquitin ligase targeting the superfluous Fas2 subunit to the proteasome is Ubr1. The ubiquitin-conjugating enzymes Ubc2 and Ubc4 assist the degradation process. The AAA-ATPase Cdc48 and the Hsp70 chaperone Ssa1 are crucially involved in the elimination of Fas2.


Assuntos
Adenosina Trifosfatases/metabolismo , Ácido Graxo Sintases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Ácido Graxo Sintases/genética , Proteínas de Choque Térmico HSP70/genética , Complexo de Endopeptidases do Proteassoma/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/genética , Proteína com Valosina
3.
Anal Biochem ; 515: 14-21, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27670725

RESUMO

Protein misfolding and protein aggregation are causes of severe diseases as neurodegenerative disorders, diabetes and cancer. Therefore, the cell has to constantly monitor the folding status of its proteome. Chaperones and components of the ubiquitin-proteasome system are key players in the cellular protein quality control process. In order to characterize components of the protein quality control system in a well-established model eukaryote - the yeast Saccharomyces cerevisiae - we established new cytosolic model substrates based on firefly luciferase and ß-isopropylmalate dehydrogenase (Leu2). The use of these two different enzymes arranged in tandem as reporters enabled us to analyse the folding status and the degradation propensity of these new model substrates in yeast cells mutated in components of the cellular protein quality control system. The Hsp70 chaperone system known to be essential in the cellular protein quality control was chosen as a model for showing the high value of the luciferase-based model substrates in the characterization of components of the cytosolic protein quality control system in yeast.


Assuntos
3-Isopropilmalato Desidrogenase/metabolismo , Vaga-Lumes/genética , Proteínas de Choque Térmico HSP70/metabolismo , Luciferases de Vaga-Lume/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , 3-Isopropilmalato Desidrogenase/genética , Animais , Vaga-Lumes/metabolismo , Proteínas de Choque Térmico HSP70/genética , Luciferases de Vaga-Lume/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Proc Natl Acad Sci U S A ; 110(38): 15271-6, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23988329

RESUMO

Quality control and degradation of misfolded proteins are essential processes of all cells. The endoplasmic reticulum (ER) is the entry site of proteins into the secretory pathway in which protein folding occurs and terminally misfolded proteins are recognized and retrotranslocated across the ER membrane into the cytosol. Here, proteins undergo polyubiquitination by one of the membrane-embedded ubiquitin ligases, in yeast Hrd1/Der3 (HMG-CoA reductase degradation/degradation of the ER) and Doa10 (degradation of alpha), and are degraded by the proteasome. In this study, we identify cytosolic Ubr1 (E3 ubiquitin ligase, N-recognin) as an additional ubiquitin ligase that can participate in ER-associated protein degradation (ERAD) in yeast. We show that two polytopic ERAD substrates, mutated transporter of the mating type a pheromone, Ste6* (sterile), and cystic fibrosis transmembrane conductance regulator, undergo Ubr1-dependent degradation in the presence and absence of the canonical ER ubiquitin ligases. Whereas in the case of Ste6* Ubr1 is specifically required under stress conditions such as heat or ethanol or in the absence of the canonical ER ligases, efficient degradation of human cystic fibrosis transmembrane conductance regulator requires function of Ubr1 already in wild-type cells under standard growth conditions. Together with the Hsp70 (heat shock protein) chaperone Ssa1 (stress-seventy subfamily A) and the AAA-type ATPase Cdc48 (cell division cycle), Ubr1 directs the substrate to proteasomal degradation. These data unravel another layer of complexity in ERAD.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Imunoprecipitação , Dobramento de Proteína , Ubiquitinação , Proteína com Valosina
5.
Trends Biochem Sci ; 36(10): 515-23, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21741246

RESUMO

Cdc48 is an essential, highly prominent ATP driven machine in eukaryotic cells. Physiological function of Cdc48 has been found in a multitude of cellular processes, for instance cell cycle progression, homotypic membrane fusion, chromatin remodeling, transcriptional and metabolic regulation, and many others. The molecular function of Cdc48 is arguably best understood in endoplasmic reticulum-associated protein degradation by the ubiquitin proteasome system. In this review, we summarize the general characteristics of Cdc48/p97 and the most recent results on the molecular function of Cdc48 in some of the above processes, which were found to finally end in proteolysis-connected pathways, either involving the proteasome or autophagocytosis-mediated lysosomal degradation.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteólise , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Autofagia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Coenzimas/química , Degradação Associada com o Retículo Endoplasmático , Humanos , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Ubiquitinadas/metabolismo , Proteína com Valosina
6.
Biochim Biophys Acta ; 1843(1): 182-96, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23850760

RESUMO

Mistakes are part of our world and constantly occurring. Due to transcriptional and translational failures, genomic mutations or diverse stress conditions like oxidation or heat misfolded proteins are permanently produced in every compartment of the cell. As misfolded proteins in general lose their native function and tend to aggregate several cellular mechanisms have been evolved dealing with such potentially toxic protein species. Misfolded proteins are mostly recognized by chaperones on the basis of their exposed hydrophobic patches and, if unable to refold them to their native state, are targeted to proteolytic pathways. Most prominent are the ubiquitin-proteasome system and the autophagic vacuolar (lysosomal) system, eliminating misfolded proteins from the cellular environment. A major task of this quality control system is the specific recognition and separation of the misfolded from the correctly folded protein species and the folding intermediates, respectively, which are on the way to the correct folded state but exhibit properties of misfolded proteins. In this review we focus on the recognition process and subsequent degradation of misfolded proteins via the ubiquitin-proteasome system in the different cell compartments of eukaryotic cells. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.


Assuntos
Complexo de Endopeptidases do Proteassoma/fisiologia , Proteólise , Ubiquitina/fisiologia , Animais , Degradação Associada com o Retículo Endoplasmático/fisiologia , Humanos , Estabilidade Proteica , Desdobramento de Proteína , Proteínas/metabolismo , Controle de Qualidade
7.
J Biol Chem ; 287(30): 25602-14, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22645139

RESUMO

In the yeast Saccharomyces cerevisiae, key regulatory enzymes of gluconeogenesis such as fructose-1,6-bisphosphatase are degraded via the ubiquitin proteasome system when cells are replenished with glucose. Polyubiquitination is carried out by the Gid complex, a multisubunit ubiquitin ligase that consists of seven different Gid (glucose-induced degradation-deficient) proteins. Under gluconeogenic conditions the E3 ligase is composed of six subunits (Gid1/Vid30, Gid2/Rmd5, Gid5/Vid28, Gid7, Gid8, and Gid9/Fyv10). Upon the addition of glucose the regulatory subunit Gid4/Vid24 appears, binds to the Gid complex, and triggers ubiquitination of fructose-1,6-bisphosphatase. All seven proteins are essential for this process; however, nothing is known about the arrangement of the subunits in the complex. Interestingly, each Gid protein possesses several remarkable motifs (e.g. SPRY, LisH, CTLH domains) that may play a role in protein-protein interaction. We, therefore, generated altered versions of individual Gid proteins by deleting or mutating these domains and performed co-immunoprecipitation experiments to analyze the interaction between distinct subunits. Thus, we were able to create an initial model of the topology of this unusual E3 ubiquitin ligase.


Assuntos
Gluconeogênese/fisiologia , Modelos Moleculares , Complexos Multienzimáticos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Ubiquitina-Proteína Ligases , Ubiquitinação/fisiologia , Motivos de Aminoácidos , Glucose/química , Glucose/genética , Glucose/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Biochim Biophys Acta ; 1823(1): 117-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21945179

RESUMO

The AAA-type ATPase Cdc48 (named p97/VCP in mammals) is a molecular machine in all eukaryotic cells that transforms ATP hydrolysis into mechanic power to unfold and pull proteins against physical forces, which make up a protein's structure and hold it in place. From the many cellular processes, Cdc48 is involved in, its function in endoplasmic reticulum associated protein degradation (ERAD) is understood best. This quality control process for proteins of the secretory pathway scans protein folding and discovers misfolded proteins in the endoplasmic reticulum (ER), the organelle, destined for folding of these proteins and their further delivery to their site of action. Misfolded lumenal and membrane proteins of the ER are detected by chaperones and lectins and retro-translocated out of the ER for degradation. Here the Cdc48 machinery, recruited to the ER membrane, takes over. After polyubiquitylation of the protein substrate, Cdc48 together with its dimeric co-factor complex Ufd1-Npl4 pulls the misfolded protein out and away from the ER membrane and delivers it to down-stream components for degradation by a cytosolic proteinase machine, the proteasome. The known details of the Cdc48-Ufd1-Npl4 motor complex triggered process are subject of this review article.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Degradação Associada com o Retículo Endoplasmático , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/enzimologia , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína , Proteína com Valosina
9.
EMBO J ; 28(19): 2874-84, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19696741

RESUMO

Endoplasmic reticulum-associated degradation (ERAD) is a cellular pathway for the disposal of misfolded secretory proteins. This process comprises recognition of the misfolded proteins followed by their retro-translocation across the ER membrane into the cytosol in which polyubiquitination and proteasomal degradation occur. A variety of data imply that the protein import channel Sec61p has a function in the ERAD process. Until now, no physical interactions between Sec61p and other essential components of the ERAD pathway could be found. Here, we establish this link by showing that Hrd3p, which is part of the Hrd-Der ubiquitin ligase complex, and other core components of the ERAD machinery physically interact with Sec61p. In addition, we study binding of misfolded CPY(*) proteins to Sec61p during the process of degradation. We show that interaction with Sec61p is maintained until the misfolded proteins are ubiquitinated on the cytosolic side of the ER. Our observations suggest that Sec61p contacts an ERAD ligase complex for further elimination of ER lumenal misfolded proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Carboxipeptidases/metabolismo , Glicosilação , Glicoproteínas de Membrana/metabolismo , Ligação Proteica , Dobramento de Proteína , Canais de Translocação SEC , Ubiquitinação
10.
Traffic ; 11(10): 1363-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20579315

RESUMO

Proteins imported into the endoplasmic reticulum (ER) are scanned for their folding status. Those that do not reach their native conformation are degraded via the ubiquitin-proteasome system. This process is called ER-associated degradation (ERAD). Der1 is known to be one of the components required for efficient degradation of soluble ERAD substrates like CPY(*) (mutated carboxypeptidase yscY). A homologue of Der1 exists, named Dfm1. No function of Dfm1 has been discovered, although a C-terminally hemagglutinin (HA)(3)-tagged Dfm1 protein has been shown to interact with the ERAD machinery. In our studies, we found Dfm1-HA(3) to be an ERAD substrate and therefore not suitable for functional studies of Dfm1 in ERAD. We found cellular, non-tagged Dfm1 to be a stable protein. We identified Dfm1 to be part of complexes which contain the ERAD-L ligase Hrd1/Der3 and Der1 as well as the ERAD-C ligase Doa10. In addition, ERAD of Ste6(*)-HA(3) was strongly dependent on Dfm1. Interestingly, Dfm1 forms a complex with the AAA-ATPase Cdc48 in a strain lacking the Cdc48 membrane-recruiting component Ubx2. This complex does not contain the ubiquitin ligases Hrd1/Der3 and Doa10. The existence of such a complex might point to an additional function of Dfm1 independent from ERAD.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína com Valosina
11.
Biochim Biophys Acta ; 1803(6): 694-705, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20219571

RESUMO

Recognition and elimination of misfolded proteins are essential cellular processes. More than thirty percent of the cellular proteins are proteins of the secretory pathway. They fold in the lumen or membrane of the endoplasmic reticulum from where they are sorted to their site of action. The folding process, as well as any refolding after cell stress, depends on chaperone activity. In case proteins are unable to acquire their native conformation, chaperones with different substrate specificity and activity guide them to elimination. For most misfolded proteins of the endoplasmic reticulum this requires retro-translocation to the cytosol and polyubiquitylation of the misfolded protein by an endoplasmic reticulum associated machinery. Thereafter ubiquitylated proteins are guided to the proteasome for degradation. This review summarizes our up to date knowledge of chaperone classes and chaperone function in endoplasmic reticulum associated degradation of protein waste.


Assuntos
Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Lectinas/química , Modelos Biológicos , Polissacarídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Compostos de Sulfidrila/química
12.
Biochem Biophys Res Commun ; 414(3): 528-32, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21971548

RESUMO

In eukaryotes, membrane and soluble proteins of the secretory pathway enter the endoplasmic reticulum (ER) after synthesis in an unfolded state. Directly after entry, most proteins are modified with glycans at suitable glycosylation sites and start to fold. A protein that cannot fold properly will be degraded in a process called ER associated degradation (ERAD). Failures in ERAD, either by loss of function or by premature degradation of proteins, are a cause of severe diseases. Therefore, the search for novel ERAD components to gain better insight in this process is of high importance. Carbohydrate trimming is a relevant process in ER quality control. In this work a novel putative yeast mannosidase encoded by the open reading frame YLR057W was identified and named Mnl2. Deletion of MNL2 diminished the degradation efficiency of misfolded CPY(*) in the absence of the cognate mannosidase Mnl1, indicating a specific role in ERAD.


Assuntos
Retículo Endoplasmático/enzimologia , Manosidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Carboxipeptidases/química , Carboxipeptidases/metabolismo , Deleção de Genes , Manosidases/genética , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
13.
Nat Cell Biol ; 4(2): 134-9, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11813000

RESUMO

Endoplasmic reticulum (ER)-associated protein degradation by the ubiquitin-proteasome system requires the dislocation of substrates from the ER into the cytosol. It has been speculated that a functional ubiquitin proteasome pathway is not only essential for proteolysis, but also for the preceding export step. Here, we show that short ubiquitin chains synthesized on proteolytic substrates are not sufficient to complete dislocation; the size of the chain seems to be a critical determinant. Moreover, our results suggest that the AAA proteins of the 26S proteasome are not directly involved in substrate export. Instead, a related AAA complex Cdc48, is required for ER-associated protein degradation upstream of the proteasome.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares , Complexo de Endopeptidases do Proteassoma , Transporte Proteico/fisiologia , Ubiquitina/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Catepsina A , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Peso Molecular , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Peptídeo Hidrolases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína com Valosina , Proteínas de Transporte Vesicular
14.
Subcell Biochem ; 54: 136-48, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21222279

RESUMO

Ubiquitylation is a protein modification mechanism, which is found in a multitude of cellular processes like DNA repair and replication, cell signaling, intracellular trafficking and also, very prominently, in selective protein degradation. One specific protein degradation event in the cell concerns the elimination of misfolded proteins to prevent disastrous malfunctioning of cellular pathways. The most complex of these ubiquitylation dependent elimination pathways of misfolded proteins is associated with the endoplasmic reticulum (ER). Proteins, which enter the endoplasmic reticulum for secretion, are folded in this organelle and transported to their site of action. A rigid protein quality control check retains proteins in the endoplasmic reticulum, which fail to fold properly and sends them back to the cytosol for elimination by the proteasome. This requires crossing of the misfolded protein of the endoplasmic reticulum membrane and polyubiquitylation in the cytosol by the ubiquitin-activating, ubiquitin-conjugating and ubiquitin-ligating enzyme machinery.Ubiquitylation is required for different steps of the ER-associated degradation process (ERAD). It facilitates efficient extraction of the ubiquitylated misfolded proteins from and out of the ER membrane by the Cdc48-Ufd1-Npl4 complex and thereby triggers their retro translocation to the cytosol. In addition, the modification with ubiquitin chains guarantees guidance, recognition and binding of the misfolded proteins to the proteasome in the cytosol for efficient degradation.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação
16.
Biochem Biophys Res Commun ; 397(3): 447-52, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20513352

RESUMO

Fructose-1,6-bisphosphatase (FBPase) is a key regulatory enzyme of gluconeogenesis. In the yeast Saccharomyces cerevisiae, it is only expressed when cells are grown in medium with nonfermentable carbon sources. Addition of glucose to cells leads to inactivation of FBPase and degradation via the ubiquitin-proteasome system. Polyubiquitination of FBPase is carried out by the Gid complex, a multi-subunit ubiquitin ligase. Using tandem affinity purification and subsequent mass spectrometry we identified the Hsp70 chaperone Ssa1 as a novel interaction partner of FBPase. Studies with the temperature-sensitive mutant ssa1-45(ts) showed that Ssa1 is essential for polyubiquitination of FBPase by the Gid complex. Moreover, we show that degradation of an additional gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, is also affected in ssa1-45(ts) cells demonstrating that Ssa1 plays a general role in elimination of gluconeogenic enzymes.


Assuntos
Frutose-Bifosfatase/metabolismo , Gluconeogênese , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico HSP70/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Biochem Biophys Res Commun ; 394(2): 335-41, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20206597

RESUMO

The switch from gluconeogenesis to glycolysis in yeast has been shown to require ubiquitin-proteasome dependent elimination of the key enzyme fructose-1,6-bisphosphatase (FBPase). Prior to proteasomal degradation, polyubiquitination of the enzyme occurs via the ubiquitin-conjugating enzymes Ubc1, Ubc4, Ubc5 and Ubc8 in conjunction with a novel multi-subunit ubiquitin ligase, the Gid complex. As an additional machinery required for the catabolite degradation process, we identified the trimeric Cdc48(Ufd1-Npl4) complex and the ubiquitin receptors Dsk2 and Rad23. We show that this machinery acts between polyubiquitination of FBPase and its degradation by the proteasome.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Frutose-Bifosfatase/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Transporte Vesicular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitinação , Proteína com Valosina
18.
Mol Biol Cell ; 18(1): 153-65, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17065559

RESUMO

The mechanism of protein quality control and elimination of misfolded proteins in the cytoplasm is poorly understood. We studied the involvement of cytoplasmic factors required for degradation of two endoplasmic reticulum (ER)-import-defective mutated derivatives of carboxypeptidase yscY (DeltassCPY* and DeltassCPY*-GFP) and also examined the requirements for degradation of the corresponding wild-type enzyme made ER-import incompetent by removal of its signal sequence (DeltassCPY). All these protein species are rapidly degraded via the ubiquitin-proteasome system. Degradation requires the ubiquitin-conjugating enzymes Ubc4p and Ubc5p, the cytoplasmic Hsp70 Ssa chaperone machinery, and the Hsp70 cochaperone Ydj1p. Neither the Hsp90 chaperones nor Hsp104 or the small heat-shock proteins Hsp26 and Hsp42 are involved in the degradation process. Elimination of a GFP fusion (GFP-cODC), containing the C-terminal 37 amino acids of ornithine decarboxylase (cODC) directing this enzyme to the proteasome, is independent of Ssa1p function. Fusion of DeltassCPY* to GFP-cODC to form DeltassCPY*-GFP-cODC reimposes a dependency on the Ssa1p chaperone for degradation. Evidently, the misfolded protein domain dictates the route of protein elimination. These data and our further results give evidence that the Ssa1p-Ydj1p machinery recognizes misfolded protein domains, keeps misfolded proteins soluble, solubilizes precipitated protein material, and escorts and delivers misfolded proteins in the ubiquitinated state to the proteasome for degradation.


Assuntos
Carboxipeptidases/química , Carboxipeptidases/metabolismo , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Catepsina A , Proteínas de Choque Térmico HSP40/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Ubiquitina/metabolismo
19.
FEBS Lett ; 592(19): 3286-3294, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30136317

RESUMO

Glucose consumption via glycolysis and its biosynthesis via gluconeogenesis are central reciprocal pathways controlled by a set of different enzymes. In the yeast Saccharomyces cerevisiae, expression of gluconeogenic enzymes is induced when cells are devoid of glucose. Availability of glucose immediately leads to inactivation and rapid degradation of these enzymes via the ubiquitin proteasome system. Polyubiquitination is carried out by the Gid complex, a multisubunit RING E3 ligase that constitutively consists of six different proteins. Upon addition of glucose to the medium, the substrate recognition subunit Gid4 appears within minutes and triggers ubiquitination of the gluconeogenic enzymes. Here, we show that Gid4 is tightly regulated on the transcriptional and protein level to ensure proper adjustment of gluconeogenesis.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Transporte Vesicular/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Glucose/metabolismo , Glucose/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Transporte Vesicular/genética
20.
FEBS Lett ; 592(15): 2515-2524, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29790175

RESUMO

Precise regulation of cellular processes is essential for life. Regarding proteins, many regulatory mechanisms were explored over the years, such as posttranslational modifications (e.g., phosphorylation), enzyme activation or inhibition by small molecules, and modulation of protein-protein interactions. Complete removal of a protein via proteolysis as a regulatory mechanism, however, was denied for a long time, mainly due to economical considerations. Scientists could not believe that a protein which is synthesized at the expense of a lot of energy could be destroyed again. Here, we discuss the landmark discoveries and the use of yeast as a eukaryotic model organism that finally paved the way for our current understanding of proteolysis as an essential regulatory principle in the cell.


Assuntos
Fenômenos Fisiológicos Celulares , Degradação Associada com o Retículo Endoplasmático/fisiologia , Proteínas/metabolismo , Proteólise , Animais , Processos de Crescimento Celular , Retículo Endoplasmático/fisiologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA