Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543049

RESUMO

The aim of this study was to obtain a series of activated carbon samples by the chemical activation of low-rank coal. The precursor was impregnated with a NaOH solution. Activated carbons were characterized by determining their textural parameters and content of surface oxygen functional groups and by using an elemental analysis. The carbons were tested as potential adsorbents for the removal of liquid pollutants represented by rhodamine B. The effectiveness of rhodamine B removal from water solutions depended on the initial concentration of the dye, the mass of rhodamine B, and the pH and temperature of the reaction. The isotherm examination followed the Langmuir isotherm model. The maximum adsorption capacity of the rhodamine B was 119 mg/g. The kinetic investigation favored the pseudo-second-order model, indicating a chemisorption mechanism. The thermodynamic assessment indicated spontaneous and endothermic adsorption, with decreased randomness at the solid-liquid interface. The experiment revealed that a 0.1 M HCl solution was the most effective regenerative agent.

2.
Molecules ; 28(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764488

RESUMO

In this study, biocarbon was obtained from the waste material corn digest. Carbon adsorbents were obtained by physical activation of the precursor with CO2. Detailed physicochemical characterization of the biocarbon was carried out using low-temperature nitrogen adsorption/desorption, Boehm titration, zero-charge point (pHpzc) and iodine number. In addition, the sorption capacity of the biocarbon agents towards an aqueous solution of methylene blue and methyl red was determined, and the kinetics of the adsorption process were determined. The biocarbon adsorbents were characterized by an average developed specific surface area covering the range from 320 to 616 m2/g. The sorption capacity of the biocarbon adsorbents against methylene blue ranged from 40 mg/g to 146 mg/g, and for methyl red it covered the range from 31 mg/g to 113 mg/g. It was shown that the efficiency of organic dye removal by the obtained biocarbons depends on the initial concentration of the adsorbate solution, its mass, shaking rate, adsorbent-adsorbate contact time and temperature. The results obtained from the Langmuir and Freundlich kinetic models showed that the Langmuir model is the most suitable model for describing the adsorption of the studied pollutants on biocarbon. In turn, the adsorption kinetics of dyes is described according to the pseudo-second-order model. Adsorption studies also showed that as the process temperature increases, the removal efficiency of methylene blue and methyl red increases.

3.
Molecules ; 28(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38067516

RESUMO

In this study, fennel (Foeniculum vulgare) seeds were used as a precursor to obtain carbon adsorbents through physical activation with carbon dioxide and chemical activation by impregnating the precursor with sodium carbonate. The physical activation involved the carbonization of the precursor at a temperature of 600 °C for 60 min and activation at a temperature of 800 °C for 30 min with carbon dioxide. Chemical activation included impregnation of the precursor with sodium carbonate at a mass ratio of a precursor to activator of 1:2. The mixture was activated in a nitrogen atmosphere with a flow rate at a temperature of 700 °C for 45 min. The resulting biochar samples were washed with 5% hydrochloric acid and subsequently rinsed with boiling distilled water. The biochar adsorbents were characterized using low-temperature nitrogen adsorption-desorption isotherms, Boehm titration, and pH measurements of their aqueous extracts. The specific surface area of the obtained adsorbents ranged from 89 to 345 m2/g. Biochar adsorbents exhibit a predominance of acidic groups over basic groups on their surfaces. The sorption capacities of the obtained samples towards an aqueous solution of methyl red range from 26 to 135 mg/g. Based on adsorption studies, it was found that the adsorption of the dye on the obtained biochar materials follows a pseudo-second-order model. The Freundlich isotherm best describes the studied process, indicating the formation of a multilayer of adsorbate on the adsorbent surface. The efficacy of adsorption in aqueous solutions of methyl red was found to increase with the elevation of the process temperature. Moreover, thermodynamic studies have shown that the adsorption process is spontaneous and endothermic. Consequently, this work provides a description of the physicochemical parameters of two biochars obtained by physical and chemical activation of a little-studied precursor-fennel seeds-and studies on their potential use as adsorbents for contaminants from the aqueous phase.


Assuntos
Foeniculum , Poluentes Químicos da Água , Dióxido de Carbono , Poluentes Químicos da Água/química , Cinética , Água , Carvão Vegetal/química , Adsorção , Sementes/química , Nitrogênio , Concentração de Íons de Hidrogênio
4.
Materials (Basel) ; 15(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629683

RESUMO

In the present work, we reported on the efficiency of the removal of organic dyes by adsorption on activated carbons prepared from the residue of supercritical extraction of marigold. The performance of adsorbents prepared was tested towards methyl red, methylene blue, malachite green, and crystal violet at room temperature. The effects of carbonization (500 and 700 °C) and activation (700 and 800 °C) temperatures, textural parameters, and acid-base character of the adsorbent surface on the sorption properties of the activated carbons were established. Activated carbons are characterized by low developed specific surface area, from 2 to 206 m2/g, and have a basic character of the surface (pH of carbons water extracts ranging from 10.4 to 11.2). Equilibrium adsorption isotherms were investigated. The equilibrium data were analyzed in the Langmuir, Freundlich, and Temkin models. The adsorption capacities of activated carbons studied varied from 47.62 to 102.43 mg/g towards methyl red, 53.14 to 139.72 mg/g towards methyl red, 425.46 to 622.80 towards malachite green and 155.91 to 293.75 mg/g towards crystal violet, from their water solutions. Kinetics of the adsorption of the organic dyes studied were found to be described by the pseudo-second-order model. It was proven that through the physical activation of the residue of supercritical extraction of marigold, it is possible to obtain carbonaceous materials of very high adsorption capacity towards organic pollutants.

5.
Materials (Basel) ; 15(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36431663

RESUMO

The aim of this study was to prepare biocarbons by biomass activation with carbon(IV) oxide. Fennel and caraway fruits were used as the precursors of bioadsorbents. The impact of the precursor type and temperature of activation on the physicochemical properties of the obtained biocarbons and their interaction with methyl red sodium salt upon adsorption process have been checked. The obtained bioadsorbents were characterized by determination of-low temperature nitrogen adsorption/desorption, elemental analysis, ash content, Boehm titration, and pH of water extracts. The biocarbons have surface area varying from 233-371 m2/g and basic in nature with acidic/basic oxygen-containing functional groups (3.23-5.08 mmol/g). The adsorption capacity varied from 63 to 141 mg/g. The influence of different parameters, such as the effectiveness of methyl red sodium salt adsorption, was evaluated. The adsorption kinetics was well fitted using a pseudo-second-order model. The Freundlich model best represented the equilibrium data. The amount of adsorbed dye was also found to increase with the increasing temperature of the process.

6.
Materials (Basel) ; 14(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207885

RESUMO

The waste materials left after supercritical extraction of hop cones and marigold flowers were tested as precursors of activated bio-carbons. Adsorbents were produced by means of the physical (also called thermal) activation method using CO2 as the gasifying agent. All the activated bio-carbons were tested for the removal of NO2 and H2S from the gas phase under dry and wet conditions. The effects of the type of precursor and the activation procedure on the porous structure development, the acid-base properties of the surface, as well as the sorption capacities of the materials produced were also checked. The final products were bio-carbons of medium developed surface area with a basic surface nature, characterized by their high effectiveness in removal of gas pollutants of acidic character, especially nitrogen dioxide (sorption capacities in the range from 12.5 to 102.6 mg/g). It was proved that the toxic gas removal efficiency depends considerably on the sorption conditions and the activation procedure. All materials showed greater effectiveness in gas removal when the process of adsorption was carried out in the presence of steam.

7.
Materials (Basel) ; 14(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832445

RESUMO

This paper deals with the adsorption of heavy metal ions (Cu2+ and Zn2+) on the carbonaceous materials obtained by chemical activation and ammoxidation of Polish brown coal. The effects of phase contact time, initial metal ion concentration, solution pH, and temperature, as well as the presence of competitive ions in solution, on the adsorption capacity of activated carbons were examined. It has been shown that the sample modified by introduction of nitrogen functional groups into carbon structure exhibits a greater ability to uptake heavy metals than unmodified activated carbon. It has also been found that the adsorption capacity increases with the increasing initial concentration of the solution and the phase contact time. The maximum adsorption was found at pH = 8.0 for Cu(II) and pH = 6.0 for Zn(II). For all samples, better fit to the experimental data was obtained with a Langmuir isotherm than a Freundlich one. A better fit of the kinetic data was achieved using the pseudo-second order model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA