Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Med Internet Res ; 21(5): e13183, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31045498

RESUMO

BACKGROUND: Nearly half of people who die by suicide see a health care provider in the month before their death. With the release of new care guidelines, detection of suicidal patients will likely increase. Providers need access to suicide-specific resources that can be used as part of immediate, brief interventions with a suicidal patient. Web-based suicide prevention resources have the potential to address this need. OBJECTIVE: This study aimed to describe the development of the NowMattersNow.org website as a resource for individuals with suicidal thoughts and to evaluate the utility of the site via user experience surveys. METHODS: NowMattersNow.org is an online video-based free public resource that provides evidence-based teachings, examples, and resources for managing suicidal thoughts and intense emotions focused largely around skills from dialectical behavior therapy. Developed with assistance from mental health consumers, it is intended to address gaps in access to services for suicidal patients in health care systems. Visitors stay an average of a minute and a half on the website. From March 2015 to December 2017, a user experience survey measured self-reported changes on a 1 (not at all) to 5 (completely overwhelming) scale regarding intensity of suicidal thoughts and negative emotions while on the website. Longitudinal regression analyses using generalized estimating equations evaluated the magnitude and statistical significance of user-reported changes in suicidal ideation and negative emotion. In secondary analyses, user-reported changes specific to subgroups, including men aged 36 to 64 years, mental health care providers, and other health care providers were evaluated. RESULTS: During the period of analysis, there were 138,386 unique website visitors. We analyzed surveys (N=3670) collected during that time. Subsamples included men aged 36 to 64 years (n=512), mental health providers (n=460), and other health care providers (n=308). A total of 28% (1028/3670) of survey completers rated their suicidal thoughts as a 5 or "completely overwhelming" when they entered the website. We observed significant reductions in self-reported intensity of suicidal thoughts (-0.21, P<.001) and negative emotions (-0.32, P<.001), including decreases for users with the most severe suicidal thoughts (-6.4%, P<.001), most severe negative emotions (-10.9%, P<.001), and for middle-aged men (-0.13, P<001). Results remained significant after controlling for length of visit to website (before the survey) and technology type (mobile, desktop, and tablet). CONCLUSIONS: Survey respondents reported measurable reductions in intensity of suicidal thoughts and emotions, including those rating their suicidal thoughts as completely or almost completely overwhelming and among middle-aged men. Although results from this user-experience survey administered at one point in time to a convenience sample of users must be interpreted with caution, results provide preliminary support for the potential effectiveness of the NowMattersNow.org website as a tool for short-term management of suicidal thoughts and negative emotions.


Assuntos
Ideação Suicida , Prevenção do Suicídio , Adulto , Feminino , Humanos , Internet , Masculino , Pessoa de Meia-Idade , Projetos de Pesquisa
2.
Biochem Biophys Res Commun ; 507(1-4): 59-66, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30409424

RESUMO

Adoptive immunotherapy using chimeric antigen receptors-modified T cells (CAR-T) is a promising approach for cancer treatment. However, CARs currently applied in the clinics cannot be effectively regulated and the safety of CAR-T cell therapies remains a major concern. To improve the safety of CAR-T cells, we designed a synthetic splitting CAR (ssCAR) that can regulate T cell functions exogenously. Epidermal growth factor receptor variant III (EGFRvIII) was used as a molecular target for ssCAR. Our results indicate that both EGFRvIII and small molecule are needed for the activation of the ssCAR-T cells. AP21967 dose-dependently increased the expression of T cell activation, production of cytokines and extent of cell lysis. In conclusion, the gene switch designed in this study allows for temporal and spatial control over engineered T cells in a dose-and time-dependent manner by AP21967. Our work demonstrates the feasibility and improved safety profile of this novel treatment approach.


Assuntos
Receptores ErbB/metabolismo , Glioblastoma/imunologia , Glioblastoma/terapia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Relação Dose-Resposta Imunológica , Células HEK293 , Humanos , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Bibliotecas de Moléculas Pequenas/farmacologia , Linfócitos T/efeitos dos fármacos , Fatores de Tempo
3.
PLoS Genet ; 9(4): e1003464, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637631

RESUMO

Gene fusions, like BCR/ABL1 in chronic myelogenous leukemia, have long been recognized in hematologic and mesenchymal malignancies. The recent finding of gene fusions in prostate and lung cancers has motivated the search for pathogenic gene fusions in other malignancies. Here, we developed a "breakpoint analysis" pipeline to discover candidate gene fusions by tell-tale transcript level or genomic DNA copy number transitions occurring within genes. Mining data from 974 diverse cancer samples, we identified 198 candidate fusions involving annotated cancer genes. From these, we validated and further characterized novel gene fusions involving ROS1 tyrosine kinase in angiosarcoma (CEP85L/ROS1), SLC1A2 glutamate transporter in colon cancer (APIP/SLC1A2), RAF1 kinase in pancreatic cancer (ATG7/RAF1) and anaplastic astrocytoma (BCL6/RAF1), EWSR1 in melanoma (EWSR1/CREM), CDK6 kinase in T-cell acute lymphoblastic leukemia (FAM133B/CDK6), and CLTC in breast cancer (CLTC/VMP1). Notably, while these fusions involved known cancer genes, all occurred with novel fusion partners and in previously unreported cancer types. Moreover, several constituted druggable targets (including kinases), with therapeutic implications for their respective malignancies. Lastly, breakpoint analysis identified new cell line models for known rearrangements, including EGFRvIII and FIP1L1/PDGFRA. Taken together, we provide a robust approach for gene fusion discovery, and our results highlight a more widespread role of fusion genes in cancer pathogenesis.


Assuntos
Fusão Gênica , Proteínas Tirosina Quinases , Genômica , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética
4.
Proc Natl Acad Sci U S A ; 108(11): 4453-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21368213

RESUMO

Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive tumors of childhood that are almost universally fatal. Our understanding of this devastating cancer is limited by a dearth of available tissue for study and by the lack of a faithful animal model. Intriguingly, DIPGs are restricted to the ventral pons and occur during a narrow window of middle childhood, suggesting dysregulation of a postnatal neurodevelopmental process. Here, we report the identification of a previously undescribed population of immunophenotypic neural precursor cells in the human and murine brainstem whose temporal and spatial distributions correlate closely with the incidence of DIPG and highlight a candidate cell of origin. Using early postmortem DIPG tumor tissue, we have established in vitro and xenograft models and find that the Hedgehog (Hh) signaling pathway implicated in many developmental and oncogenic processes is active in DIPG tumor cells. Modulation of Hh pathway activity has functional consequences for DIPG self-renewal capacity in neurosphere culture. The Hh pathway also appears to be active in normal ventral pontine precursor-like cells of the mouse, and unregulated pathway activity results in hypertrophy of the ventral pons. Together, these findings provide a foundation for understanding the cellular and molecular origins of DIPG, and suggest that the Hh pathway represents a potential therapeutic target in this devastating pediatric tumor.


Assuntos
Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/patologia , Linhagem da Célula , Proteínas Hedgehog/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Agregação Celular , Proliferação de Células , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Nestina , Fator de Transcrição 2 de Oligodendrócitos , Ponte/crescimento & desenvolvimento , Ponte/patologia , Transdução de Sinais , Fatores de Tempo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Neurooncol ; 108(3): 395-402, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22382786

RESUMO

Despite numerous clinical trials over the past 2 decades, the overall survival for children diagnosed with diffuse intrinsic pontine glioma (DIPG) remains 9-10 months. Radiation therapy is the only treatment with proven effect and novel therapies are needed. Epidermal growth factor receptor variant III (EGFRvIII) is the most common variant of the epidermal growth factor receptor and is expressed in many tumor types but is rarely found in normal tissue. A peptide vaccine targeting EGFRvIII is currently undergoing investigation in phase 3 clinical trials for the treatment of newly diagnosed glioblastoma (GBM), the tumor in which this variant receptor was first discovered. In this study, we evaluated EGFRvIII expression in pediatric DIPG samples using immunohistochemistry with a double affinity purified antibody raised against the EGFRvIII peptide. Staining of pediatric DIPG histological samples revealed expression in 4 of 9 cases and the pattern of staining was consistent with what has been seen in EGFRvIII transfected cells as well as GBMs from adult trials. In addition, analysis of tumor samples collected immediately post mortem and of DIPG cells in culture by RT-PCR, western blot analysis, and flow cytometry confirmed EGFRvIII expression. We were therefore able to detect EGFRvIII expression in 6 of 11 DIPG cases. These data suggest that EGFRvIII warrants investigation as a target for these deadly pediatric tumors.


Assuntos
Neoplasias do Tronco Encefálico/genética , Receptores ErbB/genética , Adulto , Western Blotting , Neoplasias do Tronco Encefálico/metabolismo , Pré-Escolar , Receptores ErbB/metabolismo , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Fragmentos de Peptídeos/imunologia , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Sci Transl Med ; 13(598)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135109

RESUMO

Despite its essential role in antigen presentation, enhancing proteasomal processing is an unexploited strategy for improving vaccines. pepVIII, an anticancer vaccine targeting EGFRvIII, has been tested in several trials for glioblastoma. We examined 20 peptides in silico and experimentally, which showed that a tyrosine substitution (Y6-pepVIII) maximizes proteasome cleavage and survival in a subcutaneous tumor model in mice. In an intracranial glioma model, Y6-pepVIII showed a 62 and 31% improvement in median survival compared to control animals and pepVIII-vaccinated mice. Y6-pepVIII vaccination altered tumor-infiltrating lymphocyte subsets and expression of PD-1 on intratumoral T cells. Combination with anti-PD-1 therapy cured 45% of the Y6-pepVIII-vaccinated mice but was ineffective for pepVIII-treated mice. Liquid chromatography-tandem mass spectrometry analysis of proteasome-digested pepVIII and Y6-pepVIII revealed that most fragments were similar but more abundant in Y6-pepVIII digests and 77% resulted from proteasome-catalyzed peptide splicing (PCPS). We identified 10 peptides that bound human and murine MHC class I. Nine were PCPS products and only one peptide was colinear with EGFRvIII, indicating that PCPS fragments may be a component of MHC class I recognition. Despite not being colinear with EGFRvIII, two of three PCPS products tested were capable of increasing survival when administered independently as vaccines. We hypothesize that the immune response to a vaccine represents the collective contribution from multiple PCPS and linear products. Our work suggests a strategy to increase proteasomal processing of a vaccine that results in an augmented immune response and enhanced survival in mice.


Assuntos
Vacinas Anticâncer , Glioblastoma , Animais , Apresentação de Antígeno , Glioblastoma/terapia , Camundongos , Peptídeos , Complexo de Endopeptidases do Proteassoma , Vacinas de Subunidades Antigênicas
7.
BMC Biotechnol ; 10: 72, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20925961

RESUMO

BACKGROUND: EGF receptor variant III (EGFRvIII) is the most common variant of the EGF receptor observed in human tumors. It results from the in frame deletion of exons 2-7 and the generation of a novel glycine residue at the junction of exons 1 and 8. This novel juxtaposition of amino acids within the extra-cellular domain of the EGF receptor creates a tumor specific and immunogenic epitope. EGFRvIII expression has been seen in many tumor types including glioblastoma multiforme (GBM), breast adenocarcinoma, non-small cell lung carcinoma, ovarian adenocarcinoma and prostate cancer, but has been rarely observed in normal tissue. Because this variant is tumor specific and highly immunogenic, it can be used for both a diagnostic marker as well as a target for immunotherapy. Unfortunately many of the monoclonal and polyclonal antibodies directed against EGFRvIII have cross reactivity to wild type EGFR or other non-specific proteins. Furthermore, a monoclonal antibody to EGFRvIII is not readily available to the scientific community. RESULTS: In this study, we have developed a recombinant antibody that is specific for EGFRvIII, has little cross reactivity for the wild type receptor, and which can be easily produced. We initially designed a recombinant antibody with two anti-EGFRvIII single chain Fv's linked together and a human IgG1 Fc component. To enhance the specificity of this antibody for EGFRvIII, we mutated tyrosine H59 of the CDRH2 domain and tyrosine H105 of the CDRH3 domain to phenylalanine for both the anti-EGFRvIII sequence inserts. This mutated recombinant antibody, called RAb(DMvIII), specifically detects EGFRvIII expression in EGFRvIII expressing cell lines as well as in EGFRvIII expressing GBM primary tissue by western blot, immunohistochemistry (IHC) and immunofluorescence (IF) and FACS analysis. It does not recognize wild type EGFR in any of these assays. The affinity of this antibody for EGFRvIII peptide is 1.7 × 107 M⁻¹ as determined by enzyme-linked immunosorbent assay (ELISA). CONCLUSION: This recombinant antibody thus holds great potential to be used as a research reagent and diagnostic tool in research laboratories and clinics because of its high quality, easy viability and unique versatility. This antibody is also a strong candidate to be investigated for further in vivo therapeutic studies.


Assuntos
Especificidade de Anticorpos , Receptores ErbB/imunologia , Proteínas Recombinantes/biossíntese , Anticorpos de Cadeia Única/biossíntese , Animais , Afinidade de Anticorpos , Linhagem Celular Tumoral , Reações Cruzadas , Epitopos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutagênese Sítio-Dirigida , Neoplasias Experimentais/imunologia , Proteínas Recombinantes/genética , Anticorpos de Cadeia Única/genética
8.
Cancer Res ; 66(20): 10024-31, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17047065

RESUMO

c-Jun NH(2)-terminal kinases (JNK) are members of the mitogen-activated protein kinase family and have been implicated in the formation of several human tumors, especially gliomas. We have previously shown that a 55 kDa JNK isoform is constitutively active in 86% of human brain tumors and then showed that it is specifically a JNK2 isoform and likely to be either JNK2alpha2 or JNK2beta2. Notably, we found that only JNK2 isoforms possess intrinsic autophosphorylation activity and that JNK2alpha2 has the strongest activity. In the present study, we have further explored the contribution of JNK2 isoforms to brain tumor formation. Analysis of mRNA expression by reverse transcription-PCR revealed that JNK2alpha2 is expressed in 91% (10 of 11) of glioblastoma tumors, whereas JNK2beta2 is found in only 27% (3 of 11) of tumors. Both JNK2alpha2 and JNK2beta2 mRNAs are expressed in normal brain (3 of 3). Using an antibody specific for JNK2alpha isoforms, we verified that JNK2alpha2 protein is expressed in 88.2% (15 of 17) of glioblastomas, but, interestingly, no JNK2alpha2 protein was found in six normal brain samples. To evaluate biological function, we transfected U87MG cells with green fluorescent protein-tagged versions of JNK1alpha1, JNK2alpha2, and JNK2alpha2APF (a dominant-negative mutant), and derived cell lines with stable expression. Each cell line was evaluated for various tumorigenic variables including cellular growth, soft agar colony formation, and tumor formation in athymic nude mice. In each assay, JNK2alpha2 was found to be the most effective in promoting that phenotype. To identify effectors specifically affected by JNK2alpha2, we analyzed gene expression. Gene profiling showed several genes whose expression was specifically up-regulated by JNK2alpha2 but down-regulated by JNK2alpha2APF, among which eukaryotic translation initiation factor 4E (eIF4E) shows the greatest change. Because AKT acts on eIF4E, we also examined AKT activation. Unexpectedly, we found that JNK2alpha2 could specifically activate AKT. Our data provides evidence that JNK2alpha2 is the major active JNK isoform and is involved in the promotion of proliferation and growth of human glioblastoma tumors through specific activation of AKT and overexpression of eIF4E.


Assuntos
Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ativação Enzimática , Fator de Iniciação 4E em Eucariotos/biossíntese , Fator de Iniciação 4E em Eucariotos/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcrição Gênica , Transplante Heterólogo , Regulação para Cima
9.
Cancer Res ; 66(1): 331-42, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16397247

RESUMO

The interactions between cancer cells and the extracellular matrix (ECM) regulate cancer progression. The beta1C and beta1A integrins, two cytoplasmic variants of the beta1 integrin subfamily, are differentially expressed in prostate cancer. Using gene expression analysis, we show here that the beta1C variant, an inhibitor of cell proliferation, which is down-regulated in prostate cancer, up-regulates insulin-like growth factor-II (IGF-II) mRNA and protein levels. In contrast, beta1A does not affect IGF-II levels. We provide evidence that beta1C-mediated up-regulation of IGF-II levels increases adhesion to Laminin-1, a basement membrane protein down-regulated in prostate cancer, and that the beta1C cytoplasmic domain contains the structural motif sufficient to increase cell adhesion to Laminin-1. This autocrine mechanism that locally supports cell adhesion to Laminin-1 via IGF-II is selectively regulated by the beta1 cytoplasmic domain via activation of the growth factor receptor binding protein 2-associated binder-1/SH2-containing protein-tyrosine phosphatase 2/phosphatidylinositol 3-kinase pathway. Thus, the concurrent local loss of beta1C integrin, of its ligand Laminin-1, and of IGF-II in the tumor microenvironment may promote prostate cancer cell invasion and metastasis by reducing cancer cell adhesive properties. It is, therefore, conceivable that reexpression of beta1C will be sufficient to revert a neoplastic phenotype to a nonproliferative and highly adherent normal phenotype.


Assuntos
Fator de Crescimento Insulin-Like II/biossíntese , Integrina beta1/fisiologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células CHO , Adesão Celular/fisiologia , Cricetinae , Citoplasma/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/genética , Integrina beta1/biossíntese , Integrina beta1/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Laminina/metabolismo , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2 , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transfecção , Regulação para Cima
10.
Artif Cells Nanomed Biotechnol ; 46(1): 89-94, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28296511

RESUMO

Epidermal growth factor receptor variant III (EGFRvIII) is the most common variant of the EGF receptor in many human tumors. This variant is tumor specific and highly immunogenic, thus, it can be used as a target for targeted drug delivery toward tumor cells. The major aim of this study was to develop an EGFRvIII-mediated drug delivery system by anti-EGFRvIII monoclonal antibody (MAb) conjugated to doxorubicin (Dox)-loaded nanostructured lipid carriers (NLC) to enhance the targeting specificity and cytotoxic effect of Dox on EGFRvIII-overexpressing cell line. In our study, Dox was chosen as a hydrophobic cytotoxic drug and drug-loaded nanostructured lipid carriers (Dox-NLC) was prepared by solvent emulsification/evaporation method. In order to conjugate anti-EGFRvIII MAb to Dox-NLC, DSPE-PEG2000-NHS (1,2-distearoylphosphatidylethanolamine-polyethylene glycol 2000-NHS) was used as a linker. Physicochemical characteristics of antibody conjugated Dox-NLC (MAb-Dox-NLC), including particle size, zeta potential, entrapment efficiency and in vitro Dox release were investigated. Cytotoxicity of MAb-Dox-NLC against NIH-3T3 and HC2 20d2/c (EGFRvIII-transfected NIH-3T3) cell lines was evaluated. The MAb-Dox-NLC appeared to enhance the cytotoxic activity of targeted NLC against HC2 20d2/c cells. The cellular uptake percentage of targeted NLC by HC2 20d2/c cells was higher than that of NIH-3T3 cells, indicating that EGFRvIII can specifically target HC2 20d2/c cells. In conclusion, anti-EGFRvIII MAb-targeted NLC may be considered as an effective nanocarrier for targeted drug delivery.


Assuntos
Anticorpos Monoclonais/química , Doxorrubicina/química , Portadores de Fármacos/química , Receptores ErbB/imunologia , Lipídeos/química , Nanoestruturas/química , Animais , Anticorpos Monoclonais/imunologia , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Camundongos , Células NIH 3T3 , Polietilenoglicóis/química
11.
Mol Cell Biol ; 23(13): 4471-84, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12808090

RESUMO

Upon the addition of different growth factors and cytokines, the Gab1 docking protein is tyrosine phosphorylated and in turn activates different signaling pathways. On the basis of the large body of evidence concerning cross talk between the signaling pathways activated by growth factors and oxidative stress, we decided to investigate the role of Gab1 in oxidative injury. We stimulated wild-type mouse embryo fibroblasts (MEF) or MEF with a homozygous deletion of the Gab1 gene (-/- MEF) with H(2)O(2). Our results show that Gab1 is phosphorylated in a dose- and time-dependent manner after H(2)O(2) triggering. Gab1 then recruits molecules such as SHP2, phosphatidylinositol 3-kinase (PI3K), and Shc. Gab1 phosphorylation is sensitive to the Src family kinase inhibitor PP2. Furthermore, we demonstrate that Gab1 is required for H(2)O(2)-induced c-Jun N-terminal kinase (JNK) activation but not for ERK2 or p38 activation. Reconstitution of Gab1 in -/- MEF rescues JNK activation, and we find that this is dependent on the SHP2 binding site in Gab1. Cell viability assays reveal that Gab1 has a dual role in cell survival: a positive one through its interaction with PI3K and a negative one through its interaction with SHP2. This is the first report identifying Gab1 as a component in oxidative stress signaling and one that is required for JNK activation.


Assuntos
Estresse Oxidativo , Fosfoproteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sítios de Ligação , Western Blotting , Morte Celular , Linhagem Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Células HeLa , Homozigoto , Humanos , Peróxido de Hidrogênio/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Genéticos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Testes de Precipitina , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas , Tirosina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
12.
Cancer Res ; 64(6): 2007-15, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15026337

RESUMO

Grb2-associated binder 1 (Gab1) is a docking protein that is tyrosine phosphorylated following the activation of multiple cytokine receptors and receptor tyrosine kinases. Its function then is to recruit and activate multiple signaling molecules. In our previous work, we showed that Gab1 enhances cell growth and induces the transformed phenotype in NIH3T3 cells downstream of the epidermal growth factor (EGF) receptor. In this report, we analyze how it produces these effects. Because SHP-2 is the major binding partner of Gab1, we mutated its binding site in the Gab1 cDNA (Gab1/DeltaSHP-2). This construct was stably overexpressed in NIH3T3 cells (3T3-Gab1/DeltaSHP-2) and in the wild-type Gab1 cDNA (3T3-Gab1) or an empty expression vector (3T3-CTR). Our findings show that after EGF stimulation, Gab1/DeltaSHP-2 has a higher level of tyrosine phosphorylation at early time points than Gab1. Gab1/DeltaSHP-2 recruits more phosphatidylinositol 3'-kinase than Gab1 after EGF triggering, which accounts for a higher and more sustained AKT activation in 3T3-Gab1/DeltaSHP-2 cells relative to 3T3-Gab1 fibroblasts. Moreover, 3T3-Gab1/DeltaSHP-2 cells demonstrate a higher level of extracellular-regulated kinase 1 activation at early time points of EGF stimulation. However, there was an unexpected decrease in c-fos promoter induction in 3T3-Gab1/DeltaSHP-2 cells when compared with 3T3-Gab1 cells. Additionally, the 3T3-Gab1/DeltaSHP-2 cells show a reversion of the transformed phenotype, including fewer morphologic changes, an increase in stress fiber cytoskeletal organization, and a decrease in cell proliferation and anchorage independent growth. These results reveal that the Gab1/SHP-2 interaction is essential for cell growth and transformation but that this must occur through a novel pathway that is independent of extracellular-regulated kinase or AKT. On the basis of its role in growth and transformation, the Gab1/SHP-2 interaction may become an attractive target for the pharmacologic intervention of malignant cell growth.


Assuntos
Transformação Celular Neoplásica , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Fosfatases/metabolismo , Células 3T3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Adesão Celular , Divisão Celular , Ativação Enzimática , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Genes fos/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/genética , Fosforilação , Regiões Promotoras Genéticas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Tirosina Fosfatases Contendo o Domínio SH2 , Transdução de Sinais , Fibras de Estresse , Tirosina/metabolismo , Domínios de Homologia de src
13.
Cancer Res ; 63(1): 250-5, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12517805

RESUMO

The c-Jun NH(2)-terminal kinases (JNKs) have a role both in promoting apoptosis and tumorigenesis. The JNKs are encoded by three separate genes (JNK1, 2, and 3), which are spliced alternatively to create 10 JNK isoforms that are either M(r) 55,000 or 46,000 in size. However, the functional significance and distinct role for each splice variant remains unclear. We have noted previously that 86% of primary human glial tumors show activation of almost exclusively the M(r) 55,000 isoforms of JNK. To further study which isoforms are involved, we constructed glutathione S-transferase fusion proteins for all 10 JNK isoforms and examined kinase activity with or without the activating upstream kinase. Surprisingly, five JNK isoforms demonstrate autophosphorylation activity, and in addition, all four JNK2 isoforms (either M(r) 55,000 or 46,000) show a high basal level of substrate kinase activity in the absence of the upstream kinase, especially a M(r) 55,000 JNK2 isoform. Examination revealed autophosphorylation activity at the T-P-Y motif, which is critical for JNK activation, because a mutant lacking the dual phosphorylation sites did not show autophosphorylation or basal kinase activity. Using green fluorescence protein-JNK expression vectors, transient transfection into U87MG cells demonstrates that although the JNK1 isoforms localize predominantly to the cytoplasm, the JNK2 isoforms localize to the nucleus and are phosphorylated, confirming the constitutive activation seen in vitro. We then examined which JNK isoforms are active in glial tumors by performing two-dimensional electrophoresis. This revealed that the M(r) 55,000 isoforms of JNK2 are the principal active JNK isoforms present in tumors. Collectively, these results suggest that these constitutively active JNK isoforms play a significant role in glial tumors. Aside from epidermal growth factor receptor vIII, this is the only other kinase that has been shown to be basally active in glioma. The presence of constitutively active JNK isoforms may have implications for the design of inhibitors of the JNK pathway.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Encéfalo/enzimologia , Neoplasias Encefálicas/enzimologia , Ativação Enzimática , Glioblastoma , Humanos , Isoenzimas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , Fosforilação , Proteínas Recombinantes/metabolismo , Transfecção , Células Tumorais Cultivadas
14.
Oncogene ; 21(33): 5038-46, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12140754

RESUMO

The ERK pathway is typically associated with activation of the EGF receptor and has been shown to play a major role in promoting several tumor phenotypes. An analogous signaling module, the JNK pathway, has not been shown to be consistently activated by the EGF receptor but is instead more uniformly stimulated by cellular stresses and cytokines. The function of the JNK pathway in primary tumors is unclear as it has been implicated in both promoting apoptosis and cell growth in vitro, which may be a reflection of the cell lines chosen. Primary human brain tumors frequently show overexpression of the EGF receptor. To clarify the role of JNK in tumorigenesis, we have investigated the role of JNK in a large panel of primary human brain tumors and tumor derived cell lines. Here we present evidence that JNK has a major role in promoting tumorigenesis both in vivo and in vitro. Western blot analysis demonstrated that 86% (18 of 21) of primary brain tumors showed evidence of JNK activation but only 38% (8 of 21) showed evidence of ERK activation. Kinase assays revealed that 77% of brain tumor cell lines activated JNK in response to EGF (7 of 13) or had high levels of basal activity (3 of 13), whereas none of six normal cell lines analysed, including astrocytes, had these properties. Of several growth factors examined, EGF produced the highest level of JNK induction in tumor cell lines and the duration of activation was greater than that seen for ERK. Expression of a dominant-negative (dn) form of JNK potently inhibited EGF mediated anchorage independent growth and protection from cell death in two glial tumor cell lines. These findings demonstrate that enhanced JNK activation is frequently found in primary brain tumors and that this activation contributes to phenotypes related to transformation.


Assuntos
Neoplasias Encefálicas/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Apoptose , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Divisão Celular , Sobrevivência Celular , Transformação Celular Neoplásica , Inibição de Contato , Ativação Enzimática/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Fatores de Tempo , Células Tumorais Cultivadas
15.
Cancer Res ; 74(4): 1238-49, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24366881

RESUMO

The relationship between mutated proteins and the cancer stem-cell population is unclear. Glioblastoma tumors frequently express EGFRvIII, an EGF receptor (EGFR) variant that arises via gene rearrangement and amplification. However, expression of EGFRvIII is restricted despite the prevalence of the alteration. Here, we show that EGFRvIII is highly coexpressed with CD133 and that EGFRvIII(+)/CD133(+) defines the population of cancer stem cells (CSC) with the highest degree of self-renewal and tumor-initiating ability. EGFRvIII(+) cells are associated with other stem/progenitor markers, whereas markers of differentiation are found in EGFRvIII(-) cells. EGFRvIII expression is lost in standard cell culture, but its expression is maintained in tumor sphere culture, and cultured cells also retain the EGFRvIII(+)/CD133(+) coexpression, self-renewal, and tumor initiating abilities. Elimination of the EGFRvIII(+)/CD133(+) population using a bispecific antibody reduced tumorigenicity of implanted tumor cells better than any reagent directed against a single epitope. This work demonstrates that a mutated oncogene can have CSC-specific expression and be used to specifically target this population.


Assuntos
Receptores ErbB/metabolismo , Glioblastoma/terapia , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/metabolismo , Antígeno AC133 , Animais , Anticorpos Biespecíficos/uso terapêutico , Antígenos CD/imunologia , Antineoplásicos , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Separação Celular , Receptores ErbB/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicoproteínas/imunologia , Humanos , Imunoconjugados/uso terapêutico , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Peptídeos/imunologia , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Células Tumorais Cultivadas
16.
J Hematol Oncol ; 6: 33, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23656794

RESUMO

BACKGROUND: Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells appears to be a promising immunotherapeutic strategy. CAR combines the specificity of antibody and cytotoxicity of cytotoxic T lymphocytes, enhancing T cells' ability to specifically target antigens and to effectively kill cancer cells. Recent efforts have been made to integrate the costimulatory signals in the CAR to improve the antitumor efficacy. Epidermal growth factor receptor variant III (EGFRvIII) is an attractive therapeutic target as it frequently expresses in glioma and many other types of cancers. Our current study aimed to investigate the specific and efficient antitumor effect of T cells modified with CAR containing inducible costimulator (ICOS) signaling domain. METHODS: A second generation of EGFRvIII/CAR was generated and it contained the EGFRvIII single chain variable fragment, ICOS signaling domain and CD3ζ chain. Lentiviral EGFRvIII/CAR was prepared and human CD3+ T cells were infected by lentivirus encoding EGFRvIII/CAR. The expression of EGFRvIII/CAR on CD3+ T cells was confirmed by flow cytometry and Western blot. The functions of EGFRvIII/CAR+ T cells were evaluated using in vitro and in vivo methods including cytotoxicity assay, cytokine release assay and xenograft tumor mouse model. RESULTS: Chimeric EGFRvIIIscFv-ICOS-CD3ζ (EGFRvIII/CAR) was constructed and lentiviral EGFRvIII/CAR were made to titer of 106 TU/ml. The transduction efficiency of lentiviral EGFRvIII/CAR on T cells reached around 70% and expression of EGFRvIII/CAR protein was verified by immunoblotting as a band of about 57 kDa. Four hour 51Cr release assays demonstrated specific and efficient cytotoxicity of EGFRvIII/CAR+ T cells against EGFRvIII expressing U87 cells. A robust increase in the IFN-γ secretion was detected in the co-culture supernatant of the EGFRvIII/CAR+ T cells and the EGFRvIII expressing U87 cells. Intravenous and intratumor injection of EGFRvIII/CAR+ T cells inhibited the in vivo growth of the EGFRvIII expressing glioma cells. CONCLUSIONS: Our study demonstrates that the EGFRvIII/CAR-modified T cells can destroy glioma cells efficiently in an EGFRvIII specific manner and release IFN-γ in an antigen dependent manner. The specific recognition and effective killing activity of the EGFRvIII-directed T cells with ICOS signaling domain lays a foundation for us to employ such approach in future cancer treatment.


Assuntos
Neoplasias Encefálicas/imunologia , Receptores ErbB/imunologia , Glioma/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/imunologia , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Receptores ErbB/biossíntese , Feminino , Glioma/patologia , Glioma/terapia , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Expert Rev Vaccines ; 11(2): 133-44, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22309662

RESUMO

Glioblastoma multiforme (GBM) is the most common and deadly of the human brain cancers. The EGF receptor is often amplified in GBM and provides a potential therapeutic target. However, targeting the normal receptor is complicated by its nearly ubiquitous and high level of expression in certain tissues. A naturally occurring deletion mutant of the EGF receptor, EGFRvIII, is a constitutively active variant originally identified in a high percentage of brain cancer cases, and more importantly is rarely found in normal tissue. A peptide vaccine, rindopepimut (CDX-110, Celldex Therapeutics), is directed against the novel exon 1-8 junction produced by the EGFRvIII deletion, and it has shown high efficacy in preclinical models. Recent Phase II clinical trials in patients with newly diagnosed GBM have shown EGFRvIII-specific immune responses and significantly increased time to progression and overall survival in those receiving vaccine therapy, as compared with published results for standard of care. Rindopepimut therefore represents a very promising therapy for patients with GBM.


Assuntos
Neoplasias Encefálicas/terapia , Vacinas Anticâncer/uso terapêutico , Receptores ErbB/imunologia , Glioblastoma/terapia , Animais , Neoplasias Encefálicas/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/imunologia , Ensaios Clínicos como Assunto , Glioblastoma/imunologia , Humanos , Imunoterapia , Camundongos , Células NIH 3T3 , Resultado do Tratamento , Vacinação , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
18.
Cancer Res ; 72(10): 2657-71, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22419663

RESUMO

EGFRvIII is a tumor-specific variant of the epidermal growth factor receptor (EGFR). Although EGFRvIII is most commonly found in glioblastoma, its expression in other tumor types remains controversial. In this study, we investigated EGFRvIII expression and amplification in primary breast carcinoma. Our analyses confirmed the presence of EGFRvIII, but in the absence of amplification or rearrangement of the EGFR locus. Nested reverse transcriptase PCR and flow cytometry were used to detect a higher percentage of positive cases. EGFRvIII-positive cells showed increased expression of genes associated with self-renewal and epithelial-mesenchymal transition along with a higher percentage of stem-like cells. EGFRvIII also increased in vitro sphere formation and in vivo tumor formation. Mechanistically, EGFRvIII mediated its effects through the Wnt/ß-catenin pathway, leading to increased ß-catenin target gene expression. Inhibition of this pathway reversed the observed effects on cancer stem cell (CSC) phenotypes. Together, our findings show that EGFRvIII is expressed in primary breast tumors and contributes to CSC phenotypes in breast cancer cell lines through the Wnt pathway. These data suggest a novel function for EGFRvIII in breast tumorigenesis.


Assuntos
Neoplasias da Mama/genética , Receptores ErbB/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Genes erbB-1 , Humanos , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Fenótipo , Via de Sinalização Wnt
19.
Curr Opin Mol Ther ; 12(6): 741-54, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21154166

RESUMO

Celldex Therapeutics is developing rindopepimut (CDX-110), a 14-mer injectable peptide vaccine for the potential treatment of glioblastoma multiforme (GBM). Rindopepimut specifically targets a novel junctional epitope of the EGFR deletion mutant EGFRvIII, which is a constitutively active receptor that is expressed in approximately 60 to 70% of patients with GBM. EGFRvIII expression is correlated with worse prognosis and reduced overall survival. Importantly, EGFRvIII is not expressed in normal brain tissue, making it an excellent therapeutic target. Preclinical studies demonstrated lasting tumor regression and increased survival times, as well as efficient generation of EGFRvIII-specific humoral and cellular immune responses, in animals expressing EGFRvIII and vaccinated with rindopepimut. Phase I and II clinical trials in patients with GBM demonstrated significantly increased median time to progression and overall survival time in those vaccinated with rindopepimut compared with matched historical controls. Only limited side effects have been observed in patients. Given these results, rindopepimut is an extremely promising therapy for patients with GBM. Phase I and II clinical trials in patients with GBM were ongoing at the time of publication. In the future, it may be beneficial to combine rindopepimut with other treatment modalities to further prolong survival.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Receptores ErbB/imunologia , Glioblastoma/tratamento farmacológico , Vacinas de Subunidades Antigênicas/uso terapêutico , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Vacinas Anticâncer , Ensaios Clínicos como Assunto , Progressão da Doença , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Injeções , Análise de Sobrevida , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
20.
Neurosurg Clin N Am ; 21(1): 87-93, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19944969

RESUMO

Epidermal growth factor variant III (EGFRvIII) is the most common alteration of the epidermal growth factor (EGF) receptor found in human tumors. It is commonly expressed in glioblastoma multiforme (GBM), where it was initially identified. This constitutively active mutant receptor leads to unregulated growth, survival, invasion, and angiogenesis in cells that express it. EGFRvIII results from an in-frame deletion of exons 2 to 7 resulting in the fusion of exon 1 to exon 8 of the EGF receptor gene creating a novel glycine at the junction in the extracellular amino terminal domain. The juxtaposition of ordinarily distant amino acids in combination with the glycine that forms at the junction leads to a novel tumor-specific epitope that would make an ideal tumor-specific target. A peptide derived from the EGFRvIII junction can be used as a vaccine to prevent or induce the regression of tumors. This peptide vaccine has now proceeded to phase 1 and 2 clinical trials where it has been highly successful and is now undergoing investigation in a larger human clinical trial for patients who have newly diagnosed GBM. In this article, the authors discuss the preclinical data that led to the human trials and the exciting preliminary data from the clinical trials.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Vacinas Anticâncer/uso terapêutico , Glioma/tratamento farmacológico , Vacinas de Subunidades Antigênicas/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Receptores ErbB , Humanos , Imunoterapia/métodos , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA