Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Bioorg Med Chem Lett ; 27(12): 2650-2654, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28460818

RESUMO

Factor VIIa (FVIIa) inhibitors have shown strong antithrombotic efficacy in preclinical thrombosis models with limited bleeding liabilities. Discovery of potent, orally active FVIIa inhibitors has been largely unsuccessful due to the requirement of a basic P1 group to interact with Asp189 in the S1 binding pocket, limiting their membrane permeability. We have combined recently reported neutral P1 binding substituents with a highly optimized macrocyclic chemotype to produce FVIIa inhibitors with low nanomolar potency and enhanced permeability.


Assuntos
Fator VIIa/antagonistas & inibidores , Compostos Macrocíclicos/farmacologia , Inibidores de Serina Proteinase/farmacologia , Relação Dose-Resposta a Droga , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Estrutura Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade
2.
Bioorg Med Chem Lett ; 26(20): 5051-5057, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27612545

RESUMO

Selective tissue factor-factor VIIa complex (TF-FVIIa) inhibitors are viewed as promising compounds for treating thrombotic disease. In this contribution, we describe multifaceted exploratory SAR studies of S1'-binding moieties within a macrocyclic chemotype aimed at replacing cyclopropyl sulfone P1' group. Over the course of the optimization efforts, the 1-(1H-tetrazol-5-yl)cyclopropane P1' substituent emerged as an improved alternative, offering increased metabolic stability and lower clearance, while maintaining excellent potency and selectivity.


Assuntos
Fator VIIa/antagonistas & inibidores , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacologia , Tromboplastina/antagonistas & inibidores , Animais , Cães , Desenho de Fármacos , Humanos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacocinética , Relação Estrutura-Atividade
3.
Bioorg Med Chem Lett ; 26(2): 472-478, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26704266

RESUMO

The synthesis, structural activity relationships (SAR), and selectivity profile of a potent series of phenylalanine diamide FXIa inhibitors will be discussed. Exploration of P1 prime and P2 prime groups led to the discovery of compounds with high FXIa affinity, good potency in our clotting assay (aPPT), and high selectivity against a panel of relevant serine proteases as exemplified by compound 21. Compound 21 demonstrated good in vivo efficacy (EC50=2.8µM) in the rabbit electrically induced carotid arterial thrombosis model (ECAT).


Assuntos
Anilidas/farmacologia , Fator XIa/antagonistas & inibidores , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Anilidas/síntese química , Animais , Cristalografia por Raios X , Cães , Fenilalanina/síntese química , Coelhos , Relação Estrutura-Atividade
4.
J Thromb Thrombolysis ; 41(3): 514-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26660522

RESUMO

Adenosine diphosphate directly induces platelet aggregation via the G-protein coupled P2Y1 and P2Y12 receptors. P2Y12, but not P2Y1, receptor antagonists are available in the clinic. The relevance of the P2Y1 receptor as an antiplatelet target has been studied in rodents, but not in higher species. We therefore examined effects of the pharmacological blockade of the P2Y1 receptor with its selective antagonist MRS2500 in monkey models of electrolytic-mediated arterial thrombosis (ECAT) and kidney bleeding time (KBT). Abciximab, a GPIIb-IIIa antagonist, and cangrelor, a P2Y12 antagonist, were utilized to validate these monkey models. Compounds were given IV at 15-60 min before thrombosis initiation in anesthetized monkeys. Scanning electron microscopy showed the luminal surface of thrombotic artery covered with platelet aggregates and fibrin network. Administration of abciximab at 0.25 and 0.7 mg/kg IV significantly reduced thrombus weight by 71 ± 1 and 100 ± 0 %, and increased KBT by 10.0 ± 0.1- and 10.1 ± 0-fold, respectively (n = 3/dose). Likewise, cangrelor at 0.6 and 2 mg/kg/h IV significantly reduced thrombus weight significantly by 72 ± 9 % and 100 ± 0 % and increased KBT by 2.1 ± 0.1- and 9.8 ± 0.2-fold, respectively (n = 3/dose). MRS2500 [mg/kg + mg/kg/h IV] at 0.09 + 0.14 and 0.45 + 0.68 significantly reduced thrombus weight by 57 ± 1 % and 88 ± 1 % and increased KBT by 2.1 ± 0.3- and 4.9 ± 0.6-fold, respectively (n = 4/dose). In summary, MRS2500 prevented occlusive arterial thrombosis at a dose that moderately prolonged KBT, indicating a role of P2Y1 receptors in arterial thrombosis and hemostasis in monkeys. Thus P2Y1 receptor antagonism provides a suitable target for drug discovery.


Assuntos
Artérias Carótidas , Nucleotídeos de Desoxiadenina/farmacologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , Trombose/prevenção & controle , Animais , Avaliação Pré-Clínica de Medicamentos , Macaca fascicularis
5.
Bioorg Med Chem Lett ; 25(10): 2169-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25881820

RESUMO

Heterocyclic amide isosteres were incorporated into a phenylglycine-based tissue factor/factor VIIa (TF-FVIIa) inhibitor chemotype, providing potent inhibitors. An X-ray co-crystal structure of phenylimidazole 19 suggested that an imidazole nitrogen atom effectively mimics an amide carbonyl, while the phenyl ring forms key hydrophobic interactions with the S1' pocket. Exploration of phenylimidazole substitution led to the discovery of potent, selective and efficacious inhibitors of TF-FVIIa.


Assuntos
Desenho de Fármacos , Fator VIIa/antagonistas & inibidores , Imidazóis/química , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Cristalografia por Raios X , Estrutura Molecular , Inibidores de Serina Proteinase/química
6.
J Thromb Thrombolysis ; 40(4): 416-23, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26249722

RESUMO

BMS-654457 ((+) 3'-(6-carbamimidoyl-4-methyl-4-phenyl-1,2,3,4-tetrahydro-quinolin-2-yl)-4-carbamoyl-5'-(3-methyl-butyrylamino)-biphenyl-2-carboxylic acid) is a small-molecule factor XIa (FXIa) inhibitor. We evaluated the in vitro properties of BMS-654457 and its in vivo activities in rabbit models of electrolytic-induced carotid arterial thrombosis and cuticle bleeding time (BT). Kinetic studies conducted in vitro with a chromogenic substrate demonstrated that BMS-654457 is a reversible and competitive inhibitor for FXIa. BMS-654457 increased activated partial thromboplastin time (aPTT) without changing prothrombin time. It was equipotent in prolonging the plasma aPTT in human and rabbit, and less potent in rat and dog. It did not alter platelet aggregation to ADP, arachidonic acid and collagen. In vivo, BMS-654457 or vehicle was given IV prior to initiation of thrombosis or cuticle transection. Preservation of integrated carotid blood flow over 90 min (iCBF, % control) was used as a marker of antithrombotic efficacy. BMS-654457 at 0.37 mg/kg + 0.27 mg/kg/h produced almost 90 % preservation of iCBF compared to its vehicle (87 ± 10 and 16 ± 3 %, respectively, n = 6 per group) and increased BT by 1.2 ± 0.04-fold (P < 0.05). At a higher dose (1.1 mg/kg + 0.8 mg/kg/h), BMS-654457 increased BT by 1.33 ± 0.08-fold. This compares favorably to equivalent antithrombotic doses of reference anticoagulants (warfarin and dabigatran) and antiplatelet agents (clopidogrel and prasugrel) which produced four- to six-fold BT increases in the same model. In summary, BMS-654457 was effective in the prevention of arterial thrombosis in rabbits with limited effects on BT. This study supports inhibition of FXIa, with a small-molecule, reversible and direct inhibitor as a promising antithrombotic therapy with a wide therapeutic window.


Assuntos
Fator XIa/antagonistas & inibidores , Fibrinolíticos/farmacologia , Trombose/tratamento farmacológico , Animais , Tempo de Sangramento , Cães , Fibrinolíticos/química , Humanos , Tempo de Tromboplastina Parcial , Coelhos , Ratos , Especificidade da Espécie , Trombose/sangue
7.
J Med Chem ; 67(5): 3571-3589, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38385264

RESUMO

PAR4 is a promising antithrombotic target with potential for separation of efficacy from bleeding risk relative to current antiplatelet therapies. In an effort to discover a novel PAR4 antagonist chemotype, a quinoxaline-based HTS hit 3 with low µM potency was identified. Optimization of the HTS hit through the use of positional SAR scanning and the design of conformationally constrained cores led to the discovery of a quinoxaline-benzothiazole series as potent and selective PAR4 antagonists. The lead compound 48, possessing a 2 nM IC50 against PAR4 activation by γ-thrombin in platelet-rich plasma (PRP) and greater than 2500-fold selectivity versus PAR1, demonstrated robust antithrombotic efficacy and minimal bleeding in the cynomolgus monkey models.


Assuntos
Fibrinolíticos , Trombose , Animais , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Macaca fascicularis , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Receptores de Trombina , Trombina , Hemorragia , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Receptor PAR-1 , Plaquetas , Agregação Plaquetária
8.
Bioorg Med Chem Lett ; 23(8): 2432-5, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23478148

RESUMO

A 6-amidinotetrahydroquinoline screening hit was driven to a structurally novel, potent, and selective FVIIa inhibitor through a combination of library synthesis and rational design. An efficient gram-scale synthesis of the active enantiomer BMS-593214 was developed, which required significant optimization of the key Povarov annulation. Importantly, BMS-593214 showed antithrombotic efficacy in a rabbit arterial thrombosis model. A crystal structure of BMS-593214 bound to FVIIa highlights key contacts with Asp 189, Lys 192, and the S2 pocket.


Assuntos
Benzoatos/química , Benzoatos/farmacologia , Fator VIIa/antagonistas & inibidores , Fator VIIa/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Trombose/prevenção & controle , Animais , Benzoatos/síntese química , Modelos Animais de Doenças , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Coelhos , Relação Estrutura-Atividade
9.
Bioorg Med Chem Lett ; 23(6): 1604-7, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23416003

RESUMO

Bicyclic pyrazinone and pyrimidinone amides were designed and synthesized as potent TF-FVIIa inhibitors. SAR demonstrated that the S2 and S3 pockets of FVIIa prefer to bind small, lipophilic groups. An X-ray crystal structure of optimized compound 9b bound in the active site of FVIIa showed that the bicyclic scaffold provides 5 hydrogen bonding interactions in addition to projecting groups for interactions within the S1, S2 and S3 pockets. Compound 9b showed excellent FVIIa potency, good selectivity against FIXa, Xa, XIa and chymotrypsin, and good clotting activity.


Assuntos
Amidas/química , Amidinas/síntese química , Desenho de Fármacos , Fator VIIa/antagonistas & inibidores , Pirazinas/química , Pirazinas/síntese química , Pirimidinonas/química , Inibidores de Serina Proteinase/síntese química , Amidas/síntese química , Amidas/metabolismo , Amidinas/química , Amidinas/metabolismo , Sítios de Ligação , Compostos Bicíclicos com Pontes/química , Domínio Catalítico , Cristalografia por Raios X , Fator VIIa/metabolismo , Ligação Proteica , Pirazinas/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 23(18): 5244-8, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23845220

RESUMO

Aminoisoquinoline and isoquinoline groups have successfully replaced the more basic P1 benzamidine group of an acylsulfonamide factor VIIa inhibitor. Inhibitory activity was optimized by the identification of additional hydrophobic and hydrophilic P' binding interactions. The molecular details of these interactions were elucidated by X-ray crystallography and molecular modeling. We also show that decreasing the basicity of the P1 group results in improved oral bioavailability in this chemotype.


Assuntos
Benzamidinas , Fator VIIa/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Fator VIIa/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química
11.
Bioorg Med Chem Lett ; 23(11): 3239-43, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23602442

RESUMO

Preclinical data suggests that P2Y1 antagonists, such as diarylurea compound 1, may provide antithrombotic efficacy similar to P2Y12 antagonists and may have the potential of providing reduced bleeding liabilities. This manuscript describes a series of diarylureas bearing solublizing amine side chains as potent P2Y1 antagonists. Among them, compounds 2l and 3h had improved aqueous solubility and maintained antiplatelet activity compared with compound 1. Compound 2l was moderately efficacious in both rat and rabbit thrombosis models and had a moderate prolongation of bleeding time in rats similar to that of compound 1.


Assuntos
Fibrinolíticos/química , Compostos de Fenilureia/química , Antagonistas do Receptor Purinérgico P2Y/química , Piridinas/química , Receptores Purinérgicos P2Y1/química , Ureia/química , Animais , Células CACO-2 , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fibrinolíticos/síntese química , Fibrinolíticos/farmacocinética , Meia-Vida , Humanos , Microssomos Hepáticos/metabolismo , Tempo de Tromboplastina Parcial , Compostos de Fenilureia/farmacocinética , Compostos de Fenilureia/uso terapêutico , Agregação Plaquetária/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacocinética , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Piridinas/farmacocinética , Piridinas/uso terapêutico , Coelhos , Ratos , Receptores Purinérgicos P2Y1/metabolismo , Solubilidade , Relação Estrutura-Atividade , Trombose/tratamento farmacológico , Ureia/farmacocinética , Ureia/uso terapêutico , Água/química
12.
Pharmacol Res Perspect ; 10(3): e00963, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35680619

RESUMO

Apixaban is a factor Xa (FXa) inhibitor and standard-of-care anticoagulant with FXa Ki and plasma protein binding (free fraction) averages 0.08 nM and 0.13 in humans and 0.16 nM and 0.37 in rabbits, respectively. Apixaban at the approved dose of 5 mg BID achieved maximum and minimum plasma concentration of 373 nM (95% CI: 198 - 699 nM) and 224 nM (95% CI 89-501 nM), respectively, in patients with nonvalvular atrial fibrillation (AF). We calibrated the rabbit model of electrolytic-mediated arterial thrombosis (ECAT) against apixaban and correlated the potencies derived from the rabbit ECAT to in vivo efficacious exposure levels in AF patients. Vehicle and apixaban at multiple doses were infused IV in ECAT rabbits and their effects on thrombus weight were measured. Apixaban exhibited dose-related efficacy in preventing thrombosis in ECAT rabbits with EC20 , EC50 , EC60 , EC70 and EC80 of 18, 101, 169, 296, and 585 nM, respectively. After correcting for the human-to-rabbit potency based on FXa Ki and plasma protein binding, we estimated a rabbit-equally-effective plasma concentration of 157 and 259 nM to the trough and peak plasma concentration in AF patients treated with 5 mg BID of apixaban. These rabbit-equally-effective plasma concentrations matched well with the rabbit ECAT EC60 and EC70 . This study supports the potential of the rabbit ECAT to predict in vivo therapeutic drug exposure of FXa inhibitors. Achieving human-equally-effective plasma concentrations to the rabbit ECAT EC60 and EC70  may produce clinical efficacy in patient populations like AF.


Assuntos
Anticoagulantes , Trombose , Animais , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Calibragem , Inibidores do Fator Xa/farmacologia , Inibidores do Fator Xa/uso terapêutico , Humanos , Pirazóis , Piridonas , Coelhos , Trombose/tratamento farmacológico , Trombose/prevenção & controle
13.
J Thromb Haemost ; 20(2): 399-408, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34752670

RESUMO

BACKGROUND: Milvexian (BMS-986177/JNJ-70033093) is an orally bioavailable factor XIa (FXIa) inhibitor currently in phase 2 clinical trials. OBJECTIVES: To evaluate in vitro properties and in vivo characteristics of milvexian. METHODS: In vitro properties of milvexian were evaluated with coagulation and enzyme assays, and in vivo profiles were characterized with rabbit models of electrolytic-induced carotid arterial thrombosis and cuticle bleeding time (BT). RESULTS: Milvexian is an active-site, reversible inhibitor of human and rabbit FXIa (Ki 0.11 and 0.38 nM, respectively). Milvexian increased activated partial thromboplastin time (APTT) without changing prothrombin time and potently prolonged plasma APTT in humans and rabbits. Milvexian did not alter platelet aggregation to ADP, arachidonic acid, or collagen. Milvexian was evaluated for in vivo prevention and treatment of thrombosis. For prevention, milvexian 0.063 + 0.04, 0.25 + 0.17, and 1 + 0.67 mg/kg+mg/kg/h preserved 32 ± 6*, 54 ± 10*, and 76 ± 5%* of carotid blood flow (CBF) and reduced thrombus weight by 15 ± 10*, 45 ± 2*, and 70 ± 4%*, respectively (*p < .05; n = 6/dose). For treatment, thrombosis was initiated for 15 min and CBF decreased to 40% of control. Seventy-five minutes after milvexian administration, CBF averaged 1 ± 0.3, 39 ± 10, and 66 ± 2%* in groups treated with vehicle and milvexian 0.25 + 0.17 and 1 + 0.67 mg/kg+mg/kg/h, respectively (*p < .05 vs. vehicle; n = 6/group). The combination of milvexian 1 + 0.67 mg/kg+mg/kg/h and aspirin 4 mg/kg/h intravenous did not increase BT versus aspirin monotherapy. CONCLUSIONS: Milvexian is an effective antithrombotic agent with limited impact on hemostasis, even when combined with aspirin in rabbits. This study supports inhibition of FXIa with milvexian as a promising antithrombotic therapy with a wide therapeutic window.


Assuntos
Trombose das Artérias Carótidas , Trombose , Animais , Trombose das Artérias Carótidas/tratamento farmacológico , Fator XIa , Fibrinolíticos/uso terapêutico , Tempo de Tromboplastina Parcial , Coelhos , Trombose/tratamento farmacológico
14.
J Med Chem ; 65(13): 8843-8854, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35729784

RESUMO

Protease-activated receptor 4 (PAR4) is a G-protein coupled receptor that is expressed on human platelets and activated by the coagulation enzyme thrombin. PAR4 plays a key role in blood coagulation, and its importance in pathological thrombosis has been increasingly recognized in recent years. Herein, we describe the optimization of a series of imidazothiadiazole PAR4 antagonists to a first-in-class clinical candidate, BMS-986120 (43), and a backup clinical candidate, BMS-986141 (49). Both compounds demonstrated excellent antithrombotic efficacy and minimal bleeding time prolongation in monkey models relative to the clinically important antiplatelet agent clopidogrel and provide a potential opportunity to improve the standard of care in the treatment of arterial thrombosis.


Assuntos
Agregação Plaquetária , Trombose , Benzofuranos , Plaquetas , Humanos , Imidazóis , Morfolinas , Receptor PAR-1 , Receptores de Trombina , Tiazóis , Trombina , Trombose/tratamento farmacológico
15.
J Med Chem ; 65(3): 1770-1785, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34494428

RESUMO

Factor XIa (FXIa) is an enzyme in the coagulation cascade thought to amplify thrombin generation but has a limited role in hemostasis. From preclinical models and human genetics, an inhibitor of FXIa has the potential to be an antithrombotic agent with superior efficacy and safety. Reversible and irreversible inhibitors of FXIa have demonstrated excellent antithrombotic efficacy without increased bleeding time in animal models (Weitz, J. I., Chan, N. C. Arterioscler. Thromb. Vasc. Biol. 2019, 39 (1), 7-12). Herein, we report the discovery of a novel series of macrocyclic FXIa inhibitors containing a pyrazole P2' moiety. Optimization of the series for (pharmacokinetic) PK properties, free fraction, and solubility resulted in the identification of milvexian (BMS-986177/JNJ-70033093, 17, FXIa Ki = 0.11 nM) as a clinical candidate for the prevention and treatment of thromboembolic disorders, suitable for oral administration.


Assuntos
Trombose das Artérias Carótidas , Fator XIa , Fibrinolíticos , Pirimidinas , Triazóis , Animais , Camundongos , Coelhos , Administração Oral , Trombose das Artérias Carótidas/tratamento farmacológico , Fator XIa/antagonistas & inibidores , Fibrinolíticos/administração & dosagem , Fibrinolíticos/síntese química , Fibrinolíticos/farmacocinética , Fibrinolíticos/uso terapêutico , Macaca fascicularis , Estrutura Molecular , Pirazóis/administração & dosagem , Pirazóis/síntese química , Pirazóis/farmacocinética , Pirazóis/uso terapêutico , Pirimidinas/administração & dosagem , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Triazóis/administração & dosagem , Triazóis/síntese química , Triazóis/farmacocinética , Triazóis/uso terapêutico
16.
J Thromb Thrombolysis ; 31(4): 478-92, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21318583

RESUMO

Apixaban (BMS-562247; 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide), a direct inhibitor of activated factor X (FXa), is in development for the prevention and treatment of various thromboembolic diseases. With an inhibitory constant of 0.08 nM for human FXa, apixaban has greater than 30,000-fold selectivity for FXa over other human coagulation proteases. It produces a rapid onset of inhibition of FXa with association rate constant of 20 µM⁻¹/s approximately and inhibits free as well as prothrombinase- and clot-bound FXa activity in vitro. Apixaban also inhibits FXa from rabbits, rats and dogs, an activity which parallels its antithrombotic potency in these species. Although apixaban has no direct effects on platelet aggregation, it indirectly inhibits this process by reducing thrombin generation. Pre-clinical studies of apixaban in animal models have demonstrated dose-dependent antithrombotic efficacy at doses that preserved hemostasis. Apixaban improves pre-clinical antithrombotic activity, without excessive increases in bleeding times, when added on top of aspirin or aspirin plus clopidogrel at their clinically relevant doses. Apixaban has good bioavailability, low clearance and a small volume of distribution in animals and humans, and a low potential for drug-drug interactions. Elimination pathways for apixaban include renal excretion, metabolism and biliary/intestinal excretion. Although a sulfate conjugate of Ο-demethyl apixaban (O-demethyl apixaban sulfate) has been identified as the major circulating metabolite of apixaban in humans, it is inactive against human FXa. Together, these non-clinical findings have established the favorable pharmacological profile of apixaban, and support the potential use of apixaban in the clinic for the prevention and treatment of various thromboembolic diseases.


Assuntos
Descoberta de Drogas/história , Inibidores Enzimáticos , Inibidores do Fator Xa , Fibrinolíticos , Pirazóis , Piridonas , Animais , Avaliação Pré-Clínica de Medicamentos/história , Inibidores Enzimáticos/química , Inibidores Enzimáticos/história , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Fibrinolíticos/química , Fibrinolíticos/história , Fibrinolíticos/farmacocinética , Fibrinolíticos/uso terapêutico , História do Século XX , Humanos , Pirazóis/química , Pirazóis/história , Pirazóis/farmacocinética , Pirazóis/uso terapêutico , Piridonas/química , Piridonas/história , Piridonas/farmacocinética , Piridonas/uso terapêutico , Tromboembolia/tratamento farmacológico
17.
J Thromb Thrombolysis ; 32(2): 129-37, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21614454

RESUMO

BMS-262084 is a 4-carboxy-2-azetidinone-containing irreversible inhibitor of FXIa, which is selective over other coagulation proteases. We evaluated the in vitro and in vivo properties of BMS-262084 in rabbits. Studies were conducted in arteriovenous-shunt thrombosis (AVST), venous thrombosis (VT), electrolytic-mediated carotid arterial thrombosis (ECAT) and cuticle bleeding time (BT) models. BMS-262084 was infused IV from 1 h before thrombus induction or cuticle transection to the end of the experiment. In vitro, BMS-262084 prolonged activated partial thromboplastin time (aPTT) with EC(2x) (concentration required to double aPTT) of 10.6 µM in rabbit plasma, and did not prolong prothrombin time (PT), thrombin time (TT) and HepTest. In vivo, BMS-262084 produced dose-dependent antithrombotic effects in rabbits with antithrombotic ED(50) (dose that reduced thrombus weight or increased blood flow by 50% of the control) in AVST, VT and ECAT of 0.4, 0.7 and 1.5 mg/kg/h IV, respectively. BMS-262084 increased ex vivo aPTT dose-dependently without changes in PT and TT. The antithrombotic effect of BMS-262084 was significantly correlated with its ex vivo aPTT, supporting the use of ex vivo aPTT as a pharmacodynamic biomarker. BMS-262084 did not alter ex vivo rabbit platelet aggregation to ADP and collagen. BT (fold-increase) determined at 3 and 10 mg/kg/h of BMS-262084 were 1.17 ± 0.04 and 1.52 ± 0.07*, respectively (*P < 0.05 vs. control). This study demonstrated that BMS-262084 prevented experimental thrombosis at doses with low BT effects in rabbits, and suggests that a small molecule FXIa inhibitor may represent a promising antithrombotic therapy.


Assuntos
Azetidinas/farmacologia , Fator XIa/antagonistas & inibidores , Fibrinolíticos/farmacologia , Piperazinas/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Trombose Venosa/tratamento farmacológico , Animais , Azetidinas/efeitos adversos , Tempo de Sangramento , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fibrinolíticos/efeitos adversos , Masculino , Piperazinas/efeitos adversos , Testes de Função Plaquetária/métodos , Coelhos , Trombose Venosa/sangue
18.
Eur J Drug Metab Pharmacokinet ; 36(3): 129-39, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21461793

RESUMO

Apixaban is a potent, highly selective, reversible, oral, direct factor Xa (fXa) inhibitor in development for thrombosis prevention and treatment. The preclinical pharmacokinetic (PK) attributes of apixaban feature small volume of distribution (Vd), low systemic clearance (CL), and good oral bioavailability. Apixaban is well absorbed in rat, dog, and chimpanzee, with absolute oral bioavailability of approximately 50% or greater. The steady-state Vd of apixaban is approximately 0.5, 0.2, and 0.17 l/kg in rats, dogs, and chimpanzees, while CL is approximately 0.9, 0.04, and 0.018 l/h/kg, respectively. In vitro metabolic clearance of apixaban is also low. Renal clearance comprises approximately 10-30% of systemic clearance in rat, dog, and chimpanzee. Anti-fXa activity, prothrombin time (PT), and HEPTEST(®) clotting time (HCT) prolongation correlated well with plasma apixaban concentration in rat, dog and chimpanzee. There was no lag time between apixaban plasma concentration and the pharmacodynamic (PD) markers, suggesting a rapid onset of action of apixaban. The PK/PD analyses were performed using an inhibitory E (max) model for anti-fXa assay and a linear model for PT and HCT assays. The IC(50) values for anti-fXa activity were 0.73 ± 0.03 and 1.5 ± 0.15 µM for rat and dog, respectively. The apparent K ( i ) values for PT were approximately 1.7, 6.6, and 4.8 µM for rat, dog and chimpanzee, respectively. The apparent K ( i ) for HCT was approximately 1.3 µM for dog. Apixaban exhibits desirable PK and PD properties for clinical development with good oral bioavailability, small Vd, low CL, and direct, predictable, concentration-dependent PD responses.


Assuntos
Anticoagulantes/farmacocinética , Inibidores do Fator Xa , Pirazóis/farmacocinética , Piridonas/farmacocinética , Animais , Proteínas Sanguíneas/metabolismo , Cães , Humanos , Taxa de Depuração Metabólica , Pan troglodytes , Ligação Proteica , Pirazóis/farmacologia , Piridonas/farmacologia , Ratos , Especificidade da Espécie , Tempo de Coagulação do Sangue Total
19.
Res Pract Thromb Haemost ; 5(4): e12524, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34095733

RESUMO

BACKGROUND: Inhibition of activated factor XI (FXIa) is a promising antithrombotic drug target. BMS-724296 is a selective, reversible, small-molecule inhibitor of human FXIa (Ki 0.3 nM). OBJECTIVES: This study assessed effects of BMS-724296 versus standard-of-care oral anticoagulants apixaban (activated factor X inhibitor) and dabigatran (thrombin inhibitor) on arterial thrombosis, kidney bleeding time (KBT), and clotting time (CT) in nonhuman primate (NHP) cynomolgus monkey models. METHODS: Carotid artery thrombosis was produced by electrical stimulation in anesthetized NHPs. Hemostasis was assessed with a provoked KBT model. Thrombosis, KBT, and CT were monitored. Vehicle and various doses of BMS-724296, apixaban, and dabigatran were administered as bolus (intravenous [i.v.]) followed by infusion starting 30 minutes before initiation of thrombosis and continued until the experiment's end (n = 3-8/group). Primary end points included thrombus weight reduction (TWR), KBT, and CT (activated partial thromboplastin time [aPTT], prothrombin time [PT], and thrombin time [TT]). RESULTS: BMS-724296 at 0.025 + 0.05, 0.05 + 0.1, 0.102 + 0.2, and 0.4 + 0.8 mg/kg+mg/kg/h i.v. (bolus + infusion) reduced thrombus weight by 0 ± 0, 35 ± 7*, 72 ± 4*, and 86 ± 4%*, respectively (*P < .05 vs vehicle; n = 5-6/group). BMS-724296 at the highest dose (0.4 + 0.8 mg/kg+mg/kg/h) did not increase KBT compared to vehicle (109 ± 6 vs 113 ± 20 seconds, respectively) and increased ex vivo aPTT by 2.9 ± 0.1-fold without changing PT and TT. In companion NHP studies, high doses of apixaban and dabigatran produced similar TWR as BMS-724296, but increased KBT 4.3 ± 0.5-fold and 5.8 ± 0.5-fold, respectively (n = 3-4/group). CONCLUSIONS: BMS-724296 produced similar antithrombotic efficacy as apixaban and dabigatran but with no increase in KBT in NHPs. These findings suggest that FXIa inhibitors may provide safe and effective antithrombotic therapy.

20.
Circ Heart Fail ; 14(3): e007351, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33663236

RESUMO

BACKGROUND: New heart failure therapies that safely augment cardiac contractility and output are needed. Previous apelin peptide studies have highlighted the potential for APJ (apelin receptor) agonism to enhance cardiac function in heart failure. However, apelin's short half-life limits its therapeutic utility. Here, we describe the preclinical characterization of a novel, orally bioavailable APJ agonist, BMS-986224. METHODS: BMS-986224 pharmacology was compared with (Pyr1) apelin-13 using radio ligand binding and signaling pathway assays downstream of APJ (cAMP, phosphorylated ERK [extracellular signal-regulated kinase], bioluminescence resonance energy transfer-based G-protein assays, ß-arrestin recruitment, and receptor internalization). Acute effects on cardiac function were studied in anesthetized instrumented rats. Chronic effects of BMS-986224 were assessed echocardiographically in the RHR (renal hypertensive rat) model of cardiac hypertrophy and decreased cardiac output. RESULTS: BMS-986224 was a potent (Kd=0.3 nmol/L) and selective APJ agonist, exhibiting similar receptor binding and signaling profile to (Pyr1) apelin-13. G-protein signaling assays in human embryonic kidney 293 cells and human cardiomyocytes confirmed this and demonstrated a lack of signaling bias relative to (Pyr1) apelin-13. In anesthetized instrumented rats, short-term BMS-986224 infusion increased cardiac output (10%-15%) without affecting heart rate, which was similar to (Pyr1) apelin-13 but differentiated from dobutamine. Subcutaneous and oral BMS-986224 administration in the RHR model increased stroke volume and cardiac output to levels seen in healthy animals but without preventing cardiac hypertrophy and fibrosis, effects differentiated from enalapril. CONCLUSIONS: We identify a novel, potent, and orally bioavailable nonpeptidic APJ agonist that closely recapitulates the signaling properties of (Pyr1) apelin-13. We show that oral APJ agonist administration induces a sustained increase in cardiac output in the cardiac disease setting and exhibits a differentiated profile from the renin-angiotensin system inhibitor enalapril, supporting further clinical evaluation of BMS-986224 in heart failure.


Assuntos
Receptores de Apelina/agonistas , Débito Cardíaco/efeitos dos fármacos , Insuficiência Cardíaca/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Volume Sistólico/efeitos dos fármacos , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Células CHO , Cricetulus , Cães , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Haplorrinos , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação , Ensaio Radioligante , Ratos , Trítio , Pressão Ventricular/efeitos dos fármacos , beta-Arrestinas/efeitos dos fármacos , beta-Arrestinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA