Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(21): 34810-34825, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809262

RESUMO

Solar water splitting by photoelectrochemical (PEC) reactions is promising for hydrogen production. The gold nanoparticles (AuNPs) are often applied to promote the visible response of wideband photocatalysts. However, in a typical TiO2/AuNPs structure, the opposite transfer direction of excited electrons between AuNPs and TiO2 under visible light and UV light severely limits the solar PEC performance. Here we present a unique Pt/TiO2/Cu2O/NiO/AuNPs photocathode, in which the NiO hole transport layer (HTL) is inserted between AuNPs and Cu2O to achieve unidirectional transport of charge carriers and prominent plasmon-induced resonance energy transfer (PIRET) between AuNPs and Cu2O. The measured applied bias photon-to-current efficiency and the hydrogen production rate under AM 1.5G illumination can reach 1.5% and 16.4 µmol·cm-2·h-1, respectively. This work is original in using the NiO film as the PIRET spacer and provides a promising photoelectrode for energy-efficient solar water splitting.

2.
Med Phys ; 51(7): 4721-4735, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386904

RESUMO

BACKGROUND: Time-resolved magnetic resonance fingerprinting (MRF), or 4D-MRF, has been demonstrated its feasibility in motion management in radiotherapy (RT). However, the prohibitive long acquisition time is one of challenges of the clinical implementation of 4D-MRF. The shortening of acquisition time causes data insufficiency in each respiratory phase, leading to poor accuracies and consistencies of the predicted tissues' properties of each phase. PURPOSE: To develop a technique for the reconstruction of multi-phase parametric maps in four-dimensional magnetic resonance fingerprinting (4D-MRF) through the optimization of local T1 and T2 sensitivities. METHODS: The proposed technique employed an iterative optimization to tailor the data arrangement of each phase by manipulation of inter-phase frames, such that the T1 and T2 sensitivities, which were quantified by the modified Minkowski distance, of the truncated signal evolution curve was maximized. The multi-phase signal evolution curves were modified by sliding window reconstruction and inter-phase frame sharing (SWIFS). Motion correction (MC) and dot product matching were sequentially performed on the modified signal evolution and dictionary to reconstruct the multi-parametric maps. The proposed technique was evaluated by numerical simulations using the extended cardiac-torso (XCAT) phantom with regular and irregular breathing patterns, and by in vivo MRF data of three health volunteers and six liver cancer patients acquired at a 3.0 T scanner. RESULTS: In simulation study, the proposed SWIFS approach achieved the overall mean absolute percentage error (MAPE) of 8.62% ± 1.59% and 16.2% ± 3.88% for the eight-phases T1 and T2 maps, respectively, in the sagittal view with irregular breathing patterns. In contrast, the overall MAPE of T1 and T2 maps generated by the conventional approach with multiple MRF repetitions were 22.1% ± 11.0% and 30.8% ± 14.9%, respectively. For in-vivo study, the predicted mean T1 and T2 of liver by the proposed SWIFS approach were 795 ms ± 38.9 ms and 58.3 ms ± 11.7 ms, respectively. CONCLUSIONS: Both simulation and in vivo results showed that the approach empowered by T1 and T2 sensitivities optimization and sliding window under the shortened acquisition of MRF had superior performance in the estimation of multi-phase T1 and T2 maps as compared to the conventional approach with oversampling of MRF data.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Respiração , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Movimento
3.
Int J Radiat Oncol Biol Phys ; 117(2): 493-504, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116591

RESUMO

PURPOSE: The objective of this study was to develop a respiratory-correlated (RC) 4-dimensional (4D) imaging technique based on magnetic resonance fingerprinting (MRF) (RC-4DMRF) for liver tumor motion management in radiation therapy. METHODS AND MATERIALS: Thirteen patients with liver cancer were prospectively enrolled in this study. k-space MRF signals of the liver were acquired during free-breathing using the fast acquisition with steady-state precession sequence on a 3T scanner. The signals were binned into 8 respiratory phases based on respiratory surrogates, and interphase displacement vector fields were estimated using a phase-specific low-rank optimization method. Hereafter, the tissue property maps, including T1 and T2 relaxation times, and proton density, were reconstructed using a pyramid motion-compensated method that alternatively optimized interphase displacement vector fields and subspace images. To evaluate the efficacy of RC-4DMRF, amplitude motion differences and Pearson correlation coefficients were determined to assess measurement agreement in tumor motion between RC-4DMRF and cine magnetic resonance imaging (MRI); mean absolute percentage errors of the RC-4DMRF-derived tissue maps were calculated to reveal tissue quantification accuracy using digital human phantom; and tumor-to-liver contrast-to-noise ratio of RC-4DMRF images was compared with that of planning CT and contrast-enhanced MRI (CE-MRI) images. A paired Student t test was used for statistical significance analysis with a P value threshold of .05. RESULTS: RC-4DMRF achieved excellent agreement in motion measurement with cine MRI, yielding the mean (± standard deviation) Pearson correlation coefficients of 0.95 ± 0.05 and 0.93 ± 0.09 and amplitude motion differences of 1.48 ± 1.06 mm and 0.81 ± 0.64 mm in the superior-inferior and anterior-posterior directions, respectively. Moreover, RC-4DMRF achieved high accuracy in tissue property quantification, with mean absolute percentage errors of 8.8%, 9.6%, and 5.0% for T1, T2, and proton density, respectively. Notably, the tumor contrast-to-noise ratio in RC-4DMRI-derived T1 maps (6.41 ± 3.37) was found to be the highest among all tissue property maps, approximately equal to that of CE-MRI (6.96 ± 1.01, P = .862), and substantially higher than that of planning CT (2.91 ± 1.97, P = .048). CONCLUSIONS: RC-4DMRF demonstrated high accuracy in respiratory motion measurement and tissue properties quantification, potentially facilitating tumor motion management in liver radiation therapy.


Assuntos
Neoplasias Hepáticas , Prótons , Humanos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Respiração , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
4.
Radiother Oncol ; 189: 109948, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832790

RESUMO

BACKGROUND AND PURPOSE: Motion estimation from severely downsampled 4D-MRI is essential for real-time imaging and tumor tracking. This simulation study developed a novel deep learning model for simultaneous MR image reconstruction and motion estimation, named the Downsampling-Invariant Deformable Registration (D2R) model. MATERIALS AND METHODS: Forty-three patients undergoing radiotherapy for liver tumors were recruited for model training and internal validation. Five prospective patients from another center were recruited for external validation. Patients received 4D-MRI scans and 3D MRI scans. The 4D-MRI was retrospectively down-sampled to simulate real-time acquisition. Motion estimation was performed using the proposed D2R model. The accuracy and robustness of the proposed D2R model and baseline methods, including Demons, Elastix, the parametric total variation (pTV) algorithm, and VoxelMorph, were compared. High-quality (HQ) 4D-MR images were also constructed using the D2R model for real-time imaging feasibility verification. The image quality and motion accuracy of the constructed HQ 4D-MRI were evaluated. RESULTS: The D2R model showed significantly superior and robust registration performance than all the baseline methods at downsampling factors up to 500. HQ T1-weighted and T2-weighted 4D-MR images were also successfully constructed with significantly improved image quality, sub-voxel level motion error, and real-time efficiency. External validation demonstrated the robustness and generalizability of the technique. CONCLUSION: In this study, we developed a novel D2R model for deformation estimation of downsampled 4D-MR images. HQ 4D-MR images were successfully constructed using the D2R model. This model may expand the clinical implementation of 4D-MRI for real-time motion management during liver cancer treatment.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia
5.
Nanoscale ; 13(5): 2792-2800, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33491704

RESUMO

Plasmon-induced hot carriers have recently attracted considerable interest, but the energy efficiency in visible light is often low due to the short lifetime of hot carriers and the limited optical absorption of plasmonic architectures. To increase the generation of hot carriers, we propose to exert multiple plasmonic resonant modes and their strong coupling using a metal-dielectric-metal (MDM) nanocavity that comprises an Au nanohole array (AuNHA), a TiO2 thin film and an Au reflector. Unlike common MDM structures, in addition to the Fabry-Pérot mode in the dielectric layer, AuNHA as the top layer is special because it excites the localized surface plasmon resonance (LSPR) mode in the Au nanoholes and launches the gap surface plasmon polariton (GSPP) mode in the Au reflector surface. The spatial field overlapping of the three resonance modes enables strong mode coupling by optimizing the TiO2 thickness, which leads to notably enhanced average IPCE (∼1.5%) and broadband photocurrent (170 µA·cm-2). This MDM structure would be useful for photochemistry and photovoltaics using sunlight.

6.
Micromachines (Basel) ; 10(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835674

RESUMO

This work reports a microfluidic reactor that utilizes gold nanoparticles (AuNPs) for the highly efficient photocatalytic degradation of organic pollutants under visible light. The bottom of microchamber has a TiO2 film covering a layer of AuNPs (namely, TiO2/AuNP film) deposited on the F-doped SnO2 (FTO) substrate. The rough surface of FTO helps to increase the surface area and the AuNPs enables the strong absorption of visible light to excite electron/hole pairs, which are then transferred to the TiO2 film for photodegradation. The TiO2 film also isolates the AuNPs from the solution to avoid detachment and photocorrosion. Experiments show that the TiO2/AuNP film has a strong absorption over 400-800 nm and enhances the reaction rate constant by 13 times with respect to the bare TiO2 film for the photodegradation of methylene blue. In addition, the TiO2/AuNP microreactor exhibits a negligible reduction of photoactivity after five cycles of repeated tests, which verifies the protective function of the TiO2 layer. This plasmonic photocatalytic microreactor draws the strengths of microfluidics and plasmonics, and may find potential applications in continuous photocatalytic water treatment and photosynthesis. The fabrication of the microreactor uses manual operation and requires no photolithography, making it simple, easy, and of low cost for real laboratory and field tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA