RESUMO
Transcription factors are a key point of convergence between the cell-intrinsic and extracellular signals that guide synaptic development and brain plasticity. Calcium-response factor (CaRF) is a unique transcription factor first identified as a binding protein for a calcium-response element in the gene encoding brain-derived neurotrophic factor (Bdnf). We have now generated Carf knock-out (KO) mice to characterize the function of this factor in vivo. Intriguingly, Carf KO mice have selectively reduced expression of Bdnf exon IV-containing mRNA transcripts and BDNF protein in the cerebral cortex, whereas BDNF levels in the hippocampus and striatum remain unchanged, implicating CaRF as a brain region-selective regulator of BDNF expression. At the cellular level, Carf KO mice show altered expression of GABAergic proteins at striatal synapses, raising the possibility that CaRF may contribute to aspects of inhibitory synapse development. Carf KO mice show normal spatial learning in the Morris water maze and normal context-dependent fear conditioning. However they have an enhanced ability to find a new platform location on the first day of reversal training in the water maze and they extinguish conditioned fear more slowly than their wild-type littermates. Finally, Carf KO mice show normal short-term (STM) and long-term memory (LTM) in a novel object recognition task, but exhibit impairments during the remote memory phase of testing. Together, these data reveal novel roles for CaRF in the organization and/or function of neural circuits that underlie essential aspects of learning and memory.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Regulação para Baixo/genética , Transtornos da Memória/genética , Transtornos da Memória/patologia , Fatores de Transcrição/deficiência , Análise de Variância , Animais , Comportamento Animal , Células Cultivadas , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Embrião de Mamíferos , Comportamento Exploratório/fisiologia , Medo , Fibroblastos , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Transfecção/métodosRESUMO
Status epilepticus (SE) in adulthood dramatically alters the hippocampus and produces spatial learning and memory deficits. Some factors, like environmental enrichment and exercise, may promote functional recovery from SE. Prenatal choline supplementation (SUP) also protects against spatial memory deficits observed shortly after SE in adulthood, and we have previously reported that SUP attenuates the neuropathological response to SE in the adult hippocampus just 16 days after SE. It is unknown whether SUP can ameliorate longer-term cognitive and neuropathological consequences of SE, whether repeatedly engaging the injured hippocampus in a cognitive task might facilitate recovery from SE, and whether our prophylactic prenatal dietary treatment would enable the injured hippocampus to more effectively benefit from cognitive rehabilitation. To address these issues, adult offspring from rat dams that received either a control (CON) or SUP diet on embryonic days 12-17 first received training on a place learning water maze task (WM) and were then administered saline or kainic acid (KA) to induce SE. Rats then either remained in their home cage, or received three additional WM sessions at 3, 6.5, and 10 weeks after SE to test spatial learning and memory retention. Eleven weeks after SE, the brains were analyzed for several hippocampal markers known to be altered by SE. SUP attenuated SE-induced spatial learning deficits and completely rescued spatial memory retention by 10 weeks post-SE. Repeated WM experience prevented SE-induced declines in glutamic acid decarboxylase (GAD) and dentate gyrus neurogenesis, and attenuated increased glial fibrilary acidic protein (GFAP) levels. Remarkably, SUP alone was similarly protective to an even greater extent, and SUP rats that were water maze trained after SE showed reduced hilar migration of newborn neurons. These findings suggest that prophylactic SUP is protective against the long-term cognitive and neuropathological effects of KA-induced SE, and that rehabilitative cognitive enrichment may be partially beneficial.
Assuntos
Colina/administração & dosagem , Hipocampo , Ácido Caínico/efeitos adversos , Fenômenos Fisiológicos da Nutrição Pré-Natal/fisiologia , Estado Epiléptico , Animais , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato Descarboxilase/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/patologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurônios/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Retenção Psicológica/efeitos dos fármacos , Percepção Espacial/efeitos dos fármacos , Percepção Espacial/fisiologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/dietoterapia , Estado Epiléptico/patologia , Estado Epiléptico/prevenção & controleRESUMO
Increased physical activity has shown positive effects on various hippocampal memory functions through accumulating evidence that physical exercise and higher cardiorespiratory fitness can enhance human performance on nonspatial mnemonic discrimination tasks that rely on hippocampal pattern separation. However, there is less direct evidence of exercise effects on spatial pattern separation in humans, despite evidence for this association in rodent models. We examined the influence of strenuous exercise habits on spatial mnemonic discrimination among 176 young adults. We used a delayed match-/non-match-to-sample (same/different) task to assess pattern separation for spatial locations across varying degrees of similarity. Participants who reported regularly engaging in strenuous exercise three or more times per week performed significantly better than those who reported engaging in strenuous exercise fewer than three times per week, even when pattern separation tasks involved higher spatial similarity. These apparent exercise effects were observed for female, but not male, participants. These findings support likely benefits of strenuous exercise habits for human spatial pattern separation skills, and they suggest a need to explore potential interaction effects of exercise and gender.
Assuntos
Hipocampo , Memória , Exercício Físico , Feminino , Hábitos , Humanos , Adulto JovemRESUMO
Cognitive performance and cerebral hemispheric function are known to vary with fluctuating levels of estradiol and progesterone across the menstrual cycle in naturally cycling females. However, the literature is mixed with regard to how each hemisphere may be affected by elevated ovarian hormones. To better understand this, the current study employed a dual-task paradigm to examine potential shifts in hemispheric involvement for a verbal problem-solving task across the menstrual cycle in 30 right-handed, normally cycling young adult females (18-21 years old). To our knowledge, no study to date has utilized dual-task procedures to directly investigate the potential shifts in hemispheric function across the menstrual cycle. Specifically, participants were tested during both menses and their estimated midluteal phase where they engaged in repetitive unilateral finger-tapping while concurrently solving anagrams silently or aloud. Analysis of finger-tapping interference during the dual-task conditions revealed that solving anagrams silently was lateralized to the left hemisphere while solving anagrams aloud yielded a pattern of more bilateral hemispheric involvement, both of which were consistent across both menses and midluteal phases. Analysis of cognitive performance, however, revealed that silent anagrams performance while tapping with the right, but not left, hand significantly increased during the midluteal phase. Consistent with a number of other studies using different methodological approaches, the current dual-task findings suggest that when ovarian hormone levels are putatively elevated, there is enhanced recruitment of left hemisphere resources while performing a lateralized verbal task.
Assuntos
Cognição/fisiologia , Lateralidade Funcional/fisiologia , Ciclo Menstrual/fisiologia , Resolução de Problemas/fisiologia , Fala/fisiologia , Adolescente , Feminino , Dedos/fisiologia , Voluntários Saudáveis , Humanos , Menstruação/fisiologia , Movimento , Adulto JovemRESUMO
Prenatal choline supplementation (SUP) protects adult rats against spatial memory deficits observed after excitotoxin-induced status epilepticus (SE). To examine the mechanism underlying this neuroprotection, we determined the effects of SUP on a variety of hippocampal markers known to change in response to SE and thought to underlie ensuing cognitive deficits. Adult offspring from rat dams that received either a control or SUP diet on embryonic days 12-17 were administered saline or kainic acid (i.p.) to induce SE and were euthanized 16 days later. SUP markedly attenuated seizure-induced hippocampal neurodegeneration, dentate cell proliferation, and hippocampal GFAP mRNA expression levels, prevented the loss of hippocampal GAD65 protein and mRNA expression, and altered growth factor expression patterns. SUP also enhanced pre-seizure hippocampal levels of BDNF, NGF, and IGF-1, which may confer a neuroprotective hippocampal microenvironment that dampens the neuropathological response to and/or helps facilitate recovery from SE to protect cognitive function.
Assuntos
Colina/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Cuidado Pré-Natal/métodos , Estado Epiléptico/patologia , Estado Epiléptico/prevenção & controle , Animais , Feminino , Masculino , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal/fisiologia , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/dietoterapiaRESUMO
Altered dietary choline availability early in life leads to persistent changes in spatial memory and hippocampal plasticity in adulthood. Developmental programming by early choline nutrition may determine the range of adult choline intake that is optimal for the types of neural plasticity involved in cognitive function. To test this, male Sprague-Dawley rats were exposed to a choline chloride deficient (DEF), sufficient (CON), or supplemented (SUP) diet during embryonic days 12-17 and then returned to a control diet (1.1 g choline chloride/kg). At 70 days of age, we found that DEF and SUP rats required fewer choices to locate 8 baited arms of a 12-arm radial maze than CON rats. When switched to a choline-deficient diet (0 g/kg), SUP rats showed impaired performance while CON and DEF rats were unaffected. In contrast, when switched to a choline-supplemented diet (5.0 g/kg), DEF rats' performance was significantly impaired while CON and SUP rats were less affected. These changes in performance were reversible when the rats were switched back to a control diet. In a second experiment, DEF, CON, and SUP rats were either maintained on a control diet, or the choline-supplemented diet. After 12 weeks, DEF rats were significantly impaired by choline supplementation on a matching-to-place water-maze task, which was also accompanied by a decrease in dentate cell proliferation in DEF rats only. IGF-1 levels were elevated by both prenatal and adult choline supplementation. Taken together, these findings suggest that the in utero availability of an essential nutrient, choline, causes differential behavioral and neuroplastic sensitivity to the adult choline supply.
Assuntos
Colina/administração & dosagem , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Nootrópicos/administração & dosagem , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Comportamento Animal , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Deficiência de Colina/patologia , Deficiência de Colina/fisiopatologia , Suplementos Nutricionais , Feminino , Hipocampo/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Percepção Espacial/efeitos dos fármacos , Percepção Espacial/fisiologiaRESUMO
Choline is a vital nutrient needed during early development for both humans and rodents. Severe dietary choline deficiency during pregnancy leads to birth defects, while more limited deficiency during mid- to late pregnancy causes deficits in hippocampal plasticity in adult rodent offspring that are accompanied by cognitive deficits only when task demands are high. Because prenatal choline supplementation confers neuroprotection of the adult hippocampus against a variety of neural insults and aids memory, we hypothesized that prenatal choline deficiency may enhance vulnerability to neural injury. To examine this, adult offspring of rat dams either fed a control diet (CON) or one deficient in choline (DEF) during embryonic days 12-17 were given multiple injections (i.p.) of saline (control) or kainic acid to induce seizures and were euthanized 16 days later. Perhaps somewhat surprisingly, DEF rats were not more susceptible to seizure induction and showed similar levels of seizure-induced hippocampal histopathology, GAD expression loss, upregulated hippocampal GFAP and growth factor expression, and increased dentate cell and neuronal proliferation as that seen in CON rats. Although prenatal choline deficiency compromises adult hippocampal plasticity in the intact brain, it does not appear to exacerbate the neuropathological response to seizures in the adult hippocampus at least shortly after excitotoxic injury.
Assuntos
Deficiência de Colina/metabolismo , Colina/administração & dosagem , Hipocampo/metabolismo , Ácido Caínico/toxicidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Convulsões/metabolismo , Fatores Etários , Animais , Deficiência de Colina/induzido quimicamente , Suscetibilidade a Doenças , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamenteRESUMO
Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to 4 months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting 1 month after sham or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdUrd) immunolabeling and enzyme-linked immunosorbent assay indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdUrd+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor-1, and occurred despite irradiation-induced elevations in hippocampal proinflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention.