Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(1): E29-E37, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991452

RESUMO

Adaptive thermogenesis is a vital physiological process for small endotherms. Female animals usually are more sensitive to cold temperature due to anatomical differences. Whether there is a sex difference at a molecular level is unclear. Stress granules (SGs) are dynamic organelles in which untranslated mRNAs reside during cellular stress. We hypothesize that the prompt response of SGs to cold stress can reveal the molecular difference between sexes. By analyzing the content in SGs of brown adipose tissue (BAT) at the early phase of cold stress for both sexes, we found more diverse mRNAs docked in the SGs in male mice and these mRNAs representing an extensive cellular reprogramming including apoptosis process and cold-induced thermogenesis. In female mice, the mRNAs in SGs dominantly were comprised of genes regulating ribonucleoprotein complex biogenesis. Conversely, the proteome in SGs was commonly characterized as structure molecules and RNA processing for both sexes. A spectrum of eukaryotic initiation factors (eIFs) was detected in the SGs of both female and male BAT, while those remained unchanged upon cold stress in male mice, various eIF3 and eIF4G isoforms were found reduced in female mice. Taken together, the unique features in SGs of male BAT reflected a prompt uncoupling protein-1 (UCP1) induction which was absent in female, and female, by contrast, were prepared for long-term transcriptional and translational adaptations.NEW & NOTEWORTHY The proteome analysis reveals that stress granules are the predominant form of cytosolic messenger ribonucleoproteins of brown adipose tissue (BAT) at the early phase of cold exposure in mice for both sexes. The transcriptome of stress granules of BAT unveils a sex difference of molecular response in early phase of cold exposure in mice, and such difference prepares for a prompt response to cold stress in male mice while for long-term adaptation in female mice.


Assuntos
Caracteres Sexuais , Grânulos de Estresse , Camundongos , Feminino , Masculino , Animais , Proteoma , Isoformas de Proteínas , Tecido Adiposo Marrom/fisiologia , Termogênese/fisiologia , Temperatura Baixa , Proteína Desacopladora 1/genética , Camundongos Endogâmicos C57BL
2.
Circ Res ; 127(10): 1236-1252, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32820707

RESUMO

RATIONALE: Dysbiosis of gut microbiota plays an important role in cardiovascular diseases but the molecular mechanisms are complex. An association between gut microbiome and the variance in HDL-C (high-density lipoprotein-cholesterol) level was suggested in a human study. Besides, dietary fat was shown to increase both HDL-C and LDL-C (low-density lipoprotein-cholesterol) levels. We speculate that certain types of gut bacteria responding to dietary fat may help to regulate HDL-C level and potentially affect atherosclerotic development. OBJECTIVE: We aimed to investigate whether and how high-fat diet (HFD)-associated gut microbiota regulated HDL-C level. METHODS AND RESULTS: We found that HFD increased gut flagellated bacteria population in mice. The increase in HDL-C level was adopted by mice receiving fecal microbiome transplantation from HFD-fed mouse donors. HFD led to increased hepatic but not circulating flagellin, and deletion of TLR5 (Toll-like receptor 5), a receptor sensing flagellin, suppressed HFD-stimulated HDL-C and ApoA1 (apolipoprotein A1) levels. Overexpression of TLR5 in the liver of TLR5-knockout mice was able to partially restore the production of ApoA1 and HDL-C levels. Mechanistically, TLR5 activation by flagellin in primary hepatocytes stimulated ApoA1 production through the transcriptional activation responding to the binding of NF-κB (nuclear factor-κB) on Apoa1 promoter region. Furthermore, oral supplementation of flagellin was able to stimulate hepatic ApoA1 production and HDL-C level and decrease atherosclerotic lesion size in apolipoprotein E-deficient (Apoe-/-) mice without triggering hepatic and systemic inflammation. The stimulation of ApoA1 production was also seen in human ApoA1-transgenic mice treated with oral flagellin. CONCLUSIONS: Our finding suggests that commensal flagellated bacteria in gut can facilitate ApoA1 and HDL-C productions in liver through activation of TLR5 in hepatocytes. Hepatic TLR5 may be a potential drug target to increase ApoA1.


Assuntos
Apolipoproteína A-I/metabolismo , Microbioma Gastrointestinal , Fígado/metabolismo , Receptor 5 Toll-Like/metabolismo , Animais , Apolipoproteína A-I/genética , HDL-Colesterol/metabolismo , Gorduras na Dieta/metabolismo , Flagelina/metabolismo , Flagelina/farmacologia , Camundongos , NF-kappa B/metabolismo , Receptor 5 Toll-Like/efeitos dos fármacos
3.
Circulation ; 133(24): 2434-46, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27143680

RESUMO

BACKGROUND: Altered composition of the gut microbiota is involved in both the onset and progression of obesity and diabetes mellitus. However, the link between gut microbiota and obesity-related cardiovascular complications has not been explored. The present study was designed to investigate the role of Akkermansia muciniphila, a mucin-degrading bacterium with beneficial effects on metabolism, in the pathogenesis of atherosclerosis in apolipoprotein E-deficient (Apoe(-/-)) mice. METHODS AND RESULTS: Apoe(-/-) mice on normal chow diet or a Western diet were treated with A muciniphila by daily oral gavage for 8 weeks, followed by histological evaluations of atherosclerotic lesion in aorta. Real-time polymerase chain reaction analysis demonstrated that the fecal abundance of A muciniphila was significantly reduced by Western diet. Replenishment with A muciniphila reversed Western diet-induced exacerbation of atherosclerotic lesion formation without affecting hypercholesterolemia. A muciniphila prevented Western diet-induced inflammation in both the circulation and local atherosclerotic lesion, as evidenced by reduced macrophage infiltration and expression of proinflammatory cytokines and chemokines. These changes were accompanied by a marked attenuation in metabolic endotoxemia. A muciniphila-mediated reduction in circulating endotoxin level could be attributed to the induction of intestinal expression of the tight junction proteins (zona occuldens protein-1 and occludin), thereby reversing Western diet-induced increases in gut permeability. Long-term infusion of endotoxin to Apoe(-/-) mice reversed the protective effect of A muciniphila against atherosclerosis. CONCLUSION: A muciniphila attenuates atherosclerotic lesions by ameliorating metabolic endotoxemia-induced inflammation through restoration of the gut barrier.


Assuntos
Aterosclerose/prevenção & controle , Endotoxemia/prevenção & controle , Inflamação/prevenção & controle , Intestinos/microbiologia , Verrucomicrobia/fisiologia , Animais , Aterosclerose/microbiologia , Aterosclerose/patologia , Células CACO-2 , Modelos Animais de Doenças , Endotoxemia/etiologia , Endotoxemia/microbiologia , Humanos , Inflamação/etiologia , Inflamação/microbiologia , Masculino , Camundongos , Camundongos Transgênicos , Resultado do Tratamento
4.
Br J Pharmacol ; 181(11): 1654-1670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38129963

RESUMO

BACKGROUND AND PURPOSE: Radiation therapy-induced gastrointestinal distress is partly associated with the elimination of gut microbiota. The effectiveness of 5-HT receptor antagonists to treat radiation therapy-induced emesis implies a pathophysiological role of 5-HT. Peripheral 5-HT is derived from intestinal epithelium. We have investigated the role of gut microbiota in regulating intestinal 5-HT availability. EXPERIMENTAL APPROACH: A radiation therapy murine model accompanied by faecal microbiota transplantation from donors fed different diets was investigated, and mouse ileal organoids were used for mechanistic studies. The clinical relevance was validated by a small-scale human study. KEY RESULTS: Short-term high-fat diet (HFD) induced gut bacteria to produce butyrate. Irradiated mice receiving HFD-induced microbiome had the lowest ileal levels of 5-HT, compared with other recipients. Treatment with butyrate increased 5-HT uptake in mouse ileal organoids, assayed by the real-time tracking of a fluorescent substrate for monoamine transporters. Silencing the 5-HT transporter (SERT) in the organoids abolished butyrate-stimulated 5-HT uptake. The competitive tests using different types of selective 5-HT reuptake inhibitors suggested that butyrate acted as a positive allosteric modulator of SERT. In human gut microbiota, butyrate production was associated with the interconversion between acetate and butyrate. Faecal contents of both acetate and butyrate were negatively associated with serum 5-HT, but only butyrate was positively correlated with body mass index in humans. CONCLUSION AND IMPLICATIONS: Short-term HFD may be beneficial for alleviating gastrointestinal reactions by increasing butyrate to suppress local 5-HT levels and providing energy to cancer patients given radiation therapy.


Assuntos
Butiratos , Microbioma Gastrointestinal , Íleo , Camundongos Endogâmicos C57BL , Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Animais , Íleo/metabolismo , Íleo/efeitos dos fármacos , Serotonina/metabolismo , Humanos , Camundongos , Regulação Alostérica/efeitos dos fármacos , Butiratos/farmacologia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transplante de Microbiota Fecal , Dieta Hiperlipídica , Organoides/efeitos dos fármacos , Organoides/metabolismo
5.
Trends Pharmacol Sci ; 43(12): 1004-1013, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36057462

RESUMO

Therapeutic proteins are rarely available in oral dosage form because the hostile environment of the human gastrointestinal (GI) tract and their large size make this delivery method difficult. Commensal bacteria in the gut face the same situation; however, they not only survive but low levels of their structural components such as lipopolysaccharide (LPS), peptidoglycan, and flagellin are also consistently detectable in the circulatory systems of healthy individuals. This opinion article discusses how gut bacteria survive in the gut, how their components penetrate the body from the perspective of the bacteria's and the host's proactivity, and how orally administered therapeutic proteins may be developed that exploit similar mechanisms to enter the body.


Assuntos
Microbioma Gastrointestinal , Humanos , Trato Gastrointestinal/microbiologia , Bactérias
6.
Theranostics ; 12(3): 1161-1172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154480

RESUMO

Aims: Neonatal immunity is functionally immature and skewed towards a TH2-driven, anti-inflammatory profile. This neonatal immunotolerance is partly driven by the type 2 cytokines: interleukin-4 (IL-4) and interleukin-13 (IL-13). Studies on neonatal cardiac regeneration reveal the beneficial role of an anti-inflammatory response in restoring cardiac function after injury. However, the role of an imbalanced immune repertoire observed in neonates on tissue regeneration is poorly understood; specifically, whether IL-4 and IL-13 actively modulate neonatal immunity during cardiac injury. Methods and results: Neonatal mice lacking IL-4 and IL-13 (DKOs) examined at 2 days after birth exhibited reduced anti-inflammatory immune populations with basal cardiac immune populations like adult mice. Examination of neonates lacking IL-4 and IL-13 at 2 days post cardiac ischemic injury, induced on the second day after birth, showed impaired cardiac function compared to their control counterparts. Treatment with either IL-4 or IL-13 cytokine during injury restored both cardiac function and immune population profiles in knockout mice. Examination of IL-4/IL-13 downstream pathways revealed the role of STAT6 in mediating the regenerative response in neonatal hearts. As IL-4/IL-13 drives polarization of alternatively activated macrophages, we also examined the role of IL-4/IL-13 signaling within the myeloid compartment during neonatal cardiac regeneration. Injury of IL-4Rα myeloid specific knockout neonates 2 days after birth revealed that loss of IL-4/IL-13 signaling in macrophages alone was sufficient to impair cardiac regeneration. Conclusions: Our results confirm that the TH2 cytokines: IL-4 and IL-13, which skews neonatal immunity to a TH2 profile, are necessary for maintaining and mediating an anti-inflammatory response in the neonatal heart, in part through the activation of alternatively activated macrophages, thereby permitting a niche conducive for regeneration.


Assuntos
Traumatismos Cardíacos , Interleucina-13 , Animais , Imunidade Inata , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Interleucina-4/metabolismo , Macrófagos/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 30(6): 1159-65, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20299691

RESUMO

OBJECTIVE: Adiponectin is an adipocyte-derived, secreted protein that is implicated in protection against a cluster of related metabolic disorders. Mice lacking adiponectin display impaired hepatic insulin sensitivity and respond only partially to peroxisome proliferator-activated receptor gamma agonists. Adiponectin has been associated with antiinflammatory and antiatherogenic properties; however, the direct involvement of adiponectin on the atherogenic process has not been studied. METHODS AND RESULTS: We crossed adiponectin knockout mice (Adn(-/-)) or mice with chronically elevated adiponectin levels (Adn(Tg)) into the low-density lipoprotein receptor-null (Ldlr(-/-)) and the apoliprotein E-null (Apoe(-/-)) mouse models. Adiponectin levels did not correlate with a suppression of the atherogenic process. Plaque volume in the aortic root, cholesterol accumulation in the aorta, and plaque morphology under various dietary conditions were not affected by circulating adiponectin levels. In light of the strong associations reported for adiponectin with cardiovascular disease in humans, the lack of a phenotype in gain- and loss-of-function studies in mice suggests a lack of causation for adiponectin in inhibiting the buildup of atherosclerotic lesions. CONCLUSIONS: These data indicate that the actions of adiponectin on the cardiovascular system are complex and multifaceted, with a minimal direct impact on atherosclerotic plaque formation in preclinical rodent models.


Assuntos
Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Acetatos/farmacologia , Adiponectina/sangue , Adiponectina/deficiência , Adiponectina/genética , Adiponectina/metabolismo , Animais , Doenças da Aorta/sangue , Doenças da Aorta/tratamento farmacológico , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/sangue , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/patologia , Colesterol/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , PPAR gama/agonistas , PPAR gama/metabolismo , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética , Fatores de Tempo
8.
Front Immunol ; 12: 678914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149715

RESUMO

Acute or chronic kidney disease can cause micronutrient deficiency. Patients with end-stage renal disease, kidney transplantation or on dialysis have reduced circulating levels of folate, an essential B vitamin. However, the molecular mechanism is not well understood. Reabsorption of folate in renal proximal tubules through folate transporters is an important process to prevent urinary loss of folate. The present study investigated the impact of acute kidney injury (AKI) on folate transporter expression and the underlying mechanism. AKI was induced in Sprague-Dawley rats that were subjected to kidney ischemia (45 min)-reperfusion (24 h). Both male and female rats displayed kidney injury and low plasma folate levels compared with sham-operated rats. The plasma folate levels were inversely correlated to plasma creatinine levels. There was a significant increase in neutrophil gelatinase-associated lipocalin (NGAL) and IL-6 mRNA expression in the kidneys of rats with ischemia-reperfusion, indicating kidney injury and increased inflammatory cytokine expression. Ischemia-reperfusion decreased mRNA and protein expression of folate transporters including folate receptor 1 (FOLR1) and reduced folate carrier (RFC); and inhibited transcription factor Sp1/DNA binding activity in the kidneys. Simulated ischemia-reperfusion through hypoxia-reoxygenation or Sp1 siRNA transfection in human proximal tubular cells inhibited folate transporter expression and reduced intracellular folate levels. These results suggest that ischemia-reperfusion injury downregulates renal folate transporter expression and decreases folate uptake by tubular cells, which may contribute to low folate status in AKI. In conclusion, ischemia-reperfusion injury can downregulate Sp1 mediated-folate transporter expression in tubular cells, which may reduce folate reabsorption and lead to low folate status.


Assuntos
Transportadores de Ácido Fólico/genética , Ácido Fólico/sangue , Nefropatias/etiologia , Nefropatias/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Feminino , Transportadores de Ácido Fólico/metabolismo , Regulação da Expressão Gênica , Imuno-Histoquímica , Nefropatias/patologia , Testes de Função Renal , Túbulos Renais Proximais/metabolismo , Ratos , Traumatismo por Reperfusão/patologia
9.
Front Cell Dev Biol ; 9: 711253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395439

RESUMO

Toll plays an important role in innate immunity and embryonic development in lower-ranked animals, but in mammals, the homolog toll-like receptors (TLR) are reported to facilitate postnatal development of immunity only. Here, we discovered a role of TLR5 in placental development. Tlr5 was highly transcribed during the placenta-forming and functional phases. TLR5 deletion led to a smaller placental labyrinthine zone and lower embryo weight, and the smaller size of embryo was overcorrected, resulting in a higher postnatal body weight. Examination of TLR5-deficient conceptus revealed a decrease in nuclear cAMP-response element-binding protein (CREB), mechanistic target of rapamycin (mTOR) and insulin growth factor-1 receptor (IGF1R) abundances in the placenta-forming phase. Non-flagellin-based TLR5 ligands were detected in serum of female mice and the overexpression of TLR5 alone was sufficient to induce CREB nuclear translocation and mTOR transcriptional activation in trophoblasts. Taken together, we uncovered the participation of TLR5 in the early placental formation in mice, unveiling a role of TLR in embryonic development in higher-ranked animals.

10.
BMC Pediatr ; 8: 20, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18466622

RESUMO

BACKGROUND: Persistent arterial dysfunction in patients with a history of Kawasaki disease (KD) and an integral role of oxidative stress in the development of cardiovascular disease are increasingly recognized. We sought to test the hypothesis that oxidative stress is increased in KD patients and related to carotid atherosclerotic changes and stiffness. METHODS: We compared the serum levels of oxidative stress biomarkers, carotid intima-media thickness (IMT), and carotid stiffness index among KD patients with coronary aneurysms (n = 32), those without coronary complications (n = 19), and controls (n = 32). RESULTS: Compared with controls, patients with coronary aneurysms had significantly higher serum levels of malonaldehyde (2.62 +/- 0.12 microM vs 2.22 +/- 0.07 microM, p = 0.014) and hydroperoxides (26.50 +/- 1.13 microM vs 22.50 +/- 0.62 microM, p = 0.008). A linear trend of the magnitude of oxidative stress in relation to inflammatory damage was observed for malonaldehyde (p = 0.018) and hydroperoxides (p = 0.014) levels. Serum malonaldehyde and hydroperoxide levels correlated positively with carotid IMT (p < 0.001 and p = 0.034, respectively) and stiffness index (p = 0.001 and p = 0.021, respectively). Multiple linear regression analysis identified serum malonaldehyde level as a significant determinant of carotid IMT (beta = 0.31, p = 0.006) and stiffness (beta = 0.27, p = 0.008). CONCLUSION: Our findings suggest oxidative stress is increased in KD patients with coronary aneurysms and is associated with carotid intima-media thickening and stiffening.


Assuntos
Doenças das Artérias Carótidas/fisiopatologia , Artéria Carótida Primitiva/fisiopatologia , Aneurisma Coronário/fisiopatologia , Peróxido de Hidrogênio/sangue , Malondialdeído/sangue , Síndrome de Linfonodos Mucocutâneos/fisiopatologia , Estresse Oxidativo , Adolescente , Análise de Variância , Biomarcadores/sangue , Doenças das Artérias Carótidas/diagnóstico por imagem , Artéria Carótida Primitiva/diagnóstico por imagem , Estudos de Casos e Controles , Aneurisma Coronário/sangue , Aneurisma Coronário/etiologia , Elasticidade , Feminino , Humanos , Modelos Lineares , Masculino , Síndrome de Linfonodos Mucocutâneos/sangue , Síndrome de Linfonodos Mucocutâneos/complicações , Túnica Íntima/diagnóstico por imagem , Túnica Íntima/fisiopatologia , Túnica Média/diagnóstico por imagem , Túnica Média/fisiopatologia , Ultrassonografia
11.
J Mol Med (Berl) ; 96(11): 1203-1213, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178194

RESUMO

Folate is an essential micronutrient for biological function. The liver, a primary organ for folate metabolism and storage, plays an important role in folate homeostasis. Proton-coupled folate transporter (PCFT) and reduced folate carrier (RFC) are the major folate transporters responsible for folate uptake at basolateral membrane of hepatocytes. Low serum folate levels are frequently associated with obesity. We investigated the mechanism that regulated folate status in a mouse model with diet-induced obesity. Mice (C57BL/6J) were fed a high-fat diet (60% kcal fat) for 8 weeks. Mice displayed increased hepatic lipid accumulation and decreased folate levels in the liver and serum compared to mice fed a normal chow diet (10% kcal fat). High-fat diet-fed mice had low expression of PCFT and RFC and decreased nuclear respiratory factor-1 (NRF-1)/DNA-binding activity. Treatment with NRF-1 siRNA or palmitic acid reduced folate transporter expression in hepatocytes. Inhibition of NRF-1 mediated folate transporter expression significantly reduced intracellular folate levels. These results suggest that chronic consumption of high-fat diets impairs folate transporter expression via NRF-1-dependent mechanism, leading to reduced hepatic folate storage. Understanding the regulation of folate homeostasis in obesity may have an important implication in current guideline of folate intake. KEY MESSAGES: Serum and liver folate levels are decreased in diet-induced obese mice. Chronic high-fat diet consumption impairs expression of hepatic PCFT and RFC. NRF-1 regulates hepatic folate transporters expression and folate levels.


Assuntos
Dieta Hiperlipídica , Transportadores de Ácido Fólico/metabolismo , Ácido Fólico/metabolismo , Fígado/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Animais , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fator 1 Nuclear Respiratório/genética , Obesidade/metabolismo , RNA Interferente Pequeno
12.
Biochim Biophys Acta ; 1762(7): 656-65, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16837172

RESUMO

Hyperhomocysteinemia, a condition of elevated blood homocysteine level, is an independent risk factor for cardiovascular diseases. Hyperhomocysteinemia is also found in patients with liver diseases. However, the direct effect of homocysteine on liver injury is not well known. Folic acid supplementation is a promising approach for improving endothelial function in patients with hyperhomocysteinemia. The aim of this study was to investigate the direct effect of hyperhomocysteinemia on liver injury and whether folic acid could offer any protective effect to the liver. Hyperhomocysteinemia was induced in rats fed a high-methionine diet for 4 weeks. There was a significant increase in the serum aspartate aminotransferase and alanine aminotransferase activities reflecting liver injury in hyperhomocysteinemic rats. Hepatic NAD(P)H oxidase was activated during hyperhomocysteinemia leading to increased superoxide anion production and peroxynitrite formation in the liver. As a consequence, the level of lipid peroxides was significantly elevated in livers of hyperhomocysteinemic rats. Folic acid supplementation effectively inhibited NAD(P)H oxidase-mediated superoxide anion production leading to reduced lipid peroxidation in the liver. Folic acid supplementation also alleviated hyperhomocysteinemia-induced liver injury. These results suggest that hyperhomocysteinemia can cause liver injury and supplementation of folic acid offers a hepatoprotective effect.


Assuntos
Suplementos Nutricionais , Ácido Fólico/uso terapêutico , Hiper-Homocisteinemia/complicações , Fígado/patologia , Animais , Modelos Animais de Doenças , Ácido Fólico/administração & dosagem , Humanos , Hiper-Homocisteinemia/prevenção & controle , Imuno-Histoquímica , Fígado/enzimologia , Masculino , NADPH Oxidases/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxidos/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 26(5): 1043-50, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16497994

RESUMO

OBJECTIVE: Hyperhomocysteinemia is an independent risk factor for cardiovascular disorders. Our previous studies demonstrated that hyperhomocysteinemia not only elicited inflammatory responses in the vascular endothelium but also induced fatty liver and hypercholesterolemia via transcriptional regulation. One of the transcription factors activated in the liver during hyperhomocysteinemia was cAMP-response element binding protein (CREB). CREB regulates the expression of many genes including those involved in lipid and glucose metabolism. In this study, we investigated the molecular mechanism by which Hcy activated CREB in rat liver and in hepatocytes (HepG2). METHOD AND RESULTS: Hyperhomocysteinemia was induced in rats by feeding high-methionine diet for 4 weeks. There was a significant increase in hepatic cAMP levels, protein kinase A (PKA) activity and an activation of CREB. Incubation of HepG2 cells with Hcy (50 to 100 micromol/L) significantly enhanced CREB phosphorylation and subsequently increased CREB/DNA binding activity. PKA was activated in Hcy-treated cells as a result of increased cellular cAMP level. Inhibition of adenylyl cyclase not only reduced the intracellular cAMP levels elevated by Hcy treatment but also inhibited PKA activation and prevented Hcy-induced CREB phosphorylation. CONCLUSIONS: These results suggest that the cAMP/PKA signaling pathway plays an important role in mediating Hcy-induced CREB activation in hepatocyte.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/fisiologia , Hepatócitos/metabolismo , Homocisteína/farmacologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Hiper-Homocisteinemia/metabolismo , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley
14.
Biochem J ; 398(1): 73-82, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16626305

RESUMO

Hyperhomocysteinaemia is an independent risk factor for cardiovascular diseases due to atherosclerosis. The development of atherosclerosis involves reactive oxygen species-induced oxidative stress in vascular cells. Our previous study [Wang and O (2001) Biochem. J. 357, 233-240] demonstrated that Hcy (homocysteine) treatment caused a significant elevation of intracellular superoxide anion, leading to increased expression of chemokine receptor in monocytes. NADPH oxidase is primarily responsible for superoxide anion production in monocytes. In the present study, we investigated the molecular mechanism of Hcy-induced superoxide anion production in monocytes. Hcy treatment (20-100 microM) caused an activation of NADPH oxidase and an increase in the superoxide anion level in monocytes (THP-1, a human monocytic cell line). Transfection of cells with p47phox siRNA (small interfering RNA) abolished Hcy-induced superoxide anion production, indicating the involvement of NADPH oxidase. Hcy treatment resulted in phosphorylation and subsequently membrane translocation of p47phox and p67phox subunits leading to NADPH oxidase activation. Pretreatment of cells with PKC (protein kinase C) inhibitors Ro-32-0432 (bisindolylmaleimide XI hydrochloride) (selective for PKCalpha, PKCbeta and PKCgamma) abolished Hcy-induced phosphorylation of p47phox and p67phox subunits in monocytes. Transfection of cells with antisense PKCbeta oligonucleotide, but not antisense PKCalpha oligonucleotide, completely blocked Hcy-induced phosphorylation of p47phox and p67phox subunits as well as superoxide anion production. Pretreatment of cells with LY333531, a PKCbeta inhibitor, abolished Hcy-induced superoxide anion production. Taken together, these results indicate that Hcy-stimulated superoxide anion production in monocytes is regulated through PKC-dependent phosphorylation of p47phox and p67phox subunits of NADPH oxidase. Increased superoxide anion production via NADPH oxidase may play an important role in Hcy-induced inflammatory response during atherogenesis.


Assuntos
Homocisteína/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/enzimologia , NADPH Oxidases/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Subunidades Proteicas/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Humanos , NADPH Oxidases/genética , Oligonucleotídeos Antissenso/metabolismo , Fosfoproteínas/genética , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C beta , Subunidades Proteicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Superóxidos/metabolismo
15.
J Mol Med (Berl) ; 95(1): 13-20, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27639584

RESUMO

The human gut contains trillions of commensal bacteria, and similar to pathogenic bacteria, the gut microbes and their products can be recognized by toll-like receptors (TLRs). It is well acknowledged that the interaction between gut microbiota and the local TLRs help to maintain the homeostasis of intestinal immunity. High-fat intake or obesity can weaken gut integrity leading to the penetration of gut microbiota or their bacterial products into the circulation, leading to the activation of TLRs on immune cells and subsequently low-grade systemic inflammation in host. Metabolic cells including hepatocytes and adipocytes also express TLRs. Although they are able to produce and secrete inflammatory molecules, the effectiveness remains low compared with the immune cells embedded in the liver and adipose tissue. The interaction of TLRs in these metabolic cells or organs with gut microbiota remains unclear, but a few studies have suggested that the functions of these TLRs are related to metabolism. Alteration of the gut microbiota is associated with body weight change and adiposity in human, and the interaction between the commensal gut microbiota and TLRs may possibly involve both metabolic and immunological regulation. In this review, we will summarize the current findings on the relationship between TLRs and gut microbiota with a focus on metabolic regulation and discuss how such interaction participates in host metabolism.


Assuntos
Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Metabolismo Energético , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Obesidade/etiologia , Obesidade/metabolismo , Receptores Toll-Like/genética
16.
Lipids ; 52(6): 499-511, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28429150

RESUMO

The gut microbiota is proposed as a "metabolic organ" involved in energy utilization and is associated with obesity. Dietary intervention is one of the approaches for obesity management. Changes in dietary components have significant impacts on host metabolism and gut microbiota. In the present study, we examined the influence of dietary fat intervention on the modification of gut mucosa-associated microbiota profile along with body weight and metabolic parameter changes. Male C57BL/6J mice (6-week old) were fed a low fat diet (10% kcal fat) as a control or a high fat diet (HFD 60% kcal fat) for 7 weeks. In another group, mice were fed HFD for 5 weeks followed by low fat control diet for 2 weeks (HFD + Control). At 7 weeks, body weight gain, blood glucose and hepatic triacylglycerol levels of mice fed a HFD were significantly higher than that of the control group and the HFD + Control group. There were significant differences in the diversity and predicted functional properties of microbiota in the cecum and colon mucosa between the control group and the HFD group. HFD feeding reduced the ratio of Bacteroidetes to Firmicutes, a microbiota pattern often associated with obesity. The HFD + Control diet partially restored the diversity and composition of microbiota in the cecum to the pattern observed in mice fed a control diet. These results suggest that short-term high fat diet withdrawal can restore metabolic changes and prevent excess body weight gain, however, long-term dietary intervention may be required to optimize the restoration of gut microbiota in mouse.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Obesidade/microbiologia , Animais , Glicemia/análise , Glicemia/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Colo/metabolismo , Colo/microbiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/dietoterapia , Obesidade/metabolismo , Triglicerídeos/análise , Triglicerídeos/metabolismo , Aumento de Peso
17.
Sci Signal ; 10(491)2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790196

RESUMO

Nonalcoholic fatty liver disease (NAFLD) includes a spectrum of diseases that ranges in severity from hepatic steatosis to steatohepatitis, the latter of which is a major predisposing factor for liver cirrhosis and cancer. Toll-like receptor (TLR) signaling, which is critical for innate immunity, is generally believed to aggravate disease progression by inducing inflammation. Unexpectedly, we found that deficiency in TIR domain-containing adaptor-inducing interferon-ß (TRIF), a cytosolic adaptor that transduces some TLR signals, worsened hepatic steatosis induced by a high-fat diet (HFD) and that such exacerbation was independent of myeloid cells. The aggravated steatosis in Trif-/- mice was due to the increased hepatocyte transcription of the gene encoding stearoyl-coenzyme A (CoA) desaturase 1 (SCD1), the rate-limiting enzyme for lipogenesis. Activation of the TRIF pathway by polyinosinic:polycytidylic acid [poly(I:C)] suppressed the increase in SCD1 abundance induced by palmitic acid or an HFD and subsequently prevented lipid accumulation in hepatocytes. Interferon regulatory factor 3 (IRF3), a transcriptional regulator downstream of TRIF, acted as a transcriptional suppressor by directly binding to the Scd1 promoter. These results suggest an unconventional metabolic function for TLR/TRIF signaling that should be taken into consideration when seeking to pharmacologically inhibit this pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Fígado Gorduroso/genética , Hepatócitos/metabolismo , Estearoil-CoA Dessaturase/genética , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Ácido Palmítico/metabolismo , Poli C/metabolismo , Cultura Primária de Células
18.
Circ Res ; 94(1): 28-36, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14630727

RESUMO

Hyperhomocysteinemia is an independent risk factor for cardiovascular diseases. Our previous studies demonstrated an important interaction between nuclear factor-kappaB (NF-kappaB) activation and homocysteine (Hcy)-induced chemokine expression in vascular smooth muscle cells and macrophages. The objective of the present study was to investigate the in vivo effect of hyperhomocysteinemia on NF-kappaB activation and the underlying mechanism of Hcy-induced NF-kappaB activation in endothelial cells. Hyperhomocysteinemia was induced in Sprague-Dawley rats after 4 weeks of a high-methionine diet. The activated form of NF-kappaB and increased level of superoxide anions were detected in the endothelium of aortas isolated from hyperhomocysteinemic rats. The underlying mechanism of Hcy-induced NF-kappaB activation was investigated in human umbilical cord vein endothelial cells and in human aortic endothelial cells. Incubation of cells with Hcy (100 micromol/L) activated IkappaB kinases (IKKalpha and IKKbeta), leading to phosphorylation and subsequent degradation of IkappaBalpha. As a consequence, NF-kappaB nuclear translocation, enhanced NF-kappaB/DNA binding activity, and increased transcriptional activity occurred. Additional analysis revealed a marked elevation of superoxide anion levels in Hcy-treated cells. Treatment of cells with a superoxide anion scavenger (polyethylene glycol-superoxide dismutase) or IkappaB kinase inhibitor (prostaglandin A(1)) could prevent Hcy-induced activation of IKK kinases and NF-kappaB in endothelial cells. In conclusion, these results suggest that Hcy-induced superoxide anion production may play a potential role for NF-kappaB activation in the early stages of atherosclerosis in the vascular wall via activation of IkappaB kinases.


Assuntos
Endotélio Vascular/metabolismo , Hiper-Homocisteinemia/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Animais , Aorta/química , Aorta/citologia , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Homocisteína/farmacologia , Quinase I-kappa B , Proteínas I-kappa B/metabolismo , Masculino , Inibidor de NF-kappaB alfa , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxidos/análise , Superóxidos/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 22(11): 1777-83, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12426204

RESUMO

OBJECTIVE: The stimulatory effect of homocysteine (Hcy) on monocyte chemoattractant protein (MCP)-1 expression in vitro has been suggested to play an important role in Hcy-mediated atherosclerosis. We investigated whether such a stimulatory effect occurs in vivo, leading to monocyte adhesion to the endothelium. METHODS AND RESULTS: Sprague-Dawley rats were divided into 4 groups. Hyperhomocysteinemia was induced in 1 group of rats after 4 weeks of a high-methionine diet (serum Hcy levels were 4- to 5-fold higher than levels in control rats). The number of ED-1-positive cells present on the surface of aortic endothelium was significantly elevated in hyperhomocysteinemic rats. There was a significant increase in the expression of MCP-1, vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in the endothelium. Antibodies recognizing MCP-1, VCAM-1, or E-selectin could abolish the enhanced monocyte binding to the aortic endothelium of hyperhomocysteinemic rats. Endothelium-dependent aortic relaxation was impaired in hyperhomocysteinemic rats. CONCLUSIONS: These results suggest that in the absence of other known risk factors, hyperhomocysteinemia stimulates the expression of MCP-1, VCAM-1, and E-selectin in vivo, leading to increased monocyte adhesion to the aortic endothelium. Such an effect may contribute significantly to the development of atherosclerosis by facilitating monocyte/macrophage infiltration into the arterial wall.


Assuntos
Moléculas de Adesão Celular/fisiologia , Quimiocinas/fisiologia , Endotélio Vascular/fisiopatologia , Hiper-Homocisteinemia/fisiopatologia , Monócitos/metabolismo , Aderências Teciduais/metabolismo , Animais , Aorta Torácica/química , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Arteriosclerose/sangue , Arteriosclerose/patologia , Quimiocina CCL2/biossíntese , Quimiocina CCL2/fisiologia , Dieta/efeitos adversos , Modelos Animais de Doenças , Selectina E/biossíntese , Selectina E/fisiologia , Endotélio Vascular/química , Endotélio Vascular/metabolismo , Homocisteína/sangue , Hiper-Homocisteinemia/sangue , Técnicas In Vitro , Macrófagos/química , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Monócitos/química , Monócitos/patologia , Ratos , Ratos Sprague-Dawley , Aderências Teciduais/patologia , Molécula 1 de Adesão de Célula Vascular/biossíntese , Molécula 1 de Adesão de Célula Vascular/fisiologia
20.
Innate Immun ; 19(1): 20-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22637968

RESUMO

Signaling through MyD88, an adaptor utilized by all TLRs except TLR3, is pro-atherogenic; however, it is unknown whether signaling through TIR-domain-containing adaptor-inducing interferon-ß (TRIF), an adaptor used only by TLRs 3 and 4, is relevant to atherosclerosis. We determined that the TRIF(Lps2) lack-of-function mutation was atheroprotective in hyperlipidemic low density lipoprotein (LDL) receptor knockout (LDLr(-/-)) mice. LDLr(-/-) mice were crossed with either TRIF(Lps2) or TLR3 knockout mice. After feeding an atherogenic diet for 10-15 wks, atherosclerotic lesions in the heart sinus and aorta were quantitated. LDLr(-/-) mice with TRIF(Lps2) were significantly protected from atherosclerosis. TRIF(Lps2) led to a reduction in cytokines secreted from peritoneal macrophages (M) in response to hyperlipidemia. Moreover, heart sinus valves from hyperlipidemic LDLr(-/-) TRIF(Lps2) mice had significantly fewer lesional M. However, LDLr(-/-) mice deficient in TLR3 showed some enhancement of disease. Collectively, these data suggest that hyperlipidemia resulting in endogenous activation of the TRIF signaling pathway from TLR4 leads to pro-atherogenic events.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Aterosclerose/genética , Hiperlipidemias/genética , Lipoproteínas LDL/metabolismo , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Aorta/patologia , Aterosclerose/etiologia , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Vasos Coronários/patologia , Citocinas/imunologia , Dieta Aterogênica , Hiperlipidemias/complicações , Hiperlipidemias/patologia , Lipoproteínas LDL/genética , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA