Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nucleic Acids Res ; 52(1): 492-506, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38015471

RESUMO

Bacterial small RNAs (sRNAs) function in post-transcriptional regulatory responses to environmental changes. However, the lack of eukaryotic RNA interference-like machinery in bacteria has limited the systematic engineering of RNA repression. Here, we report the development of clustered regularly interspaced short palindromic repeats (CRISPR)-guided dead CRIPSR-associated protein 13a (dCas13a) ribonucleoprotein that utilizes programmable CRISPR RNAs (crRNAs) to repress trans-acting and cis-acting sRNA as the target, altering regulatory mechanisms and stress-related phenotypes. In addition, we implemented a modular loop engineering of the crRNA to promote modular repression of the target gene with 92% knockdown efficiency and a single base-pair mismatch specificity. With the engineered crRNAs, we achieved targetable single-gene repression in the polycistronic operon. For metabolic application, 102 crRNAs were constructed in the biofoundry and used for screening novel knockdown sRNA targets to improve lycopene (colored antioxidant) production in Escherichia coli. The CRISPR-dCas13a system will assist as a valuable systematic tool for the discovery of novel sRNAs and the fine-tuning of bacterial RNA repression in both scientific and industrial applications.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas Genéticas , Pequeno RNA não Traduzido , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
2.
Plant J ; 113(3): 610-625, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565011

RESUMO

Base editing enables precise gene editing without requiring donor DNA or double-stranded breaks. To facilitate base editing tools, a uracil DNA glycosylase inhibitor (UGI) was fused to cytidine deaminase-Cas nickase to inhibit uracil DNA glycosylase (UDG). Herein, we revealed that the bacteriophage PBS2-derived UGI of the cytosine base editor (CBE) could not inhibit archaic Type IV UDG in oligoploid cyanobacteria. To overcome the limitation of the CBE, dCas12a-assisted gene repression of the udg allowed base editing at the desired targets with up to 100% mutation frequencies, and yielded correct phenotypes of desired mutants in cyanobacteria. Compared with the original CBE (BE3), base editing was analyzed within a broader C4-C16 window with a strong TC-motif preference. Using multiplexed CyanoCBE, while udg was repressed, simultaneous base editing at two different sites was achieved with lower mutation frequencies than single CBE. Our discovery of a Type IV UDG that is not inhibited by the UGI of the CBE in cyanobacteria and the development of dCas12a-mediated base editing should facilitate the application of base editing not only in cyanobacteria, but also in archaea and green algae that possess Type IV UDGs. We revealed the bacteriophage-derived UGI of the base editor did not repress Type IV UDG in cyanobacteria. To overcome the limitation, orthogonal dCas12a interference was successfully applied to repress the UDG gene expression in cyanobacteria during base editing occurred, yielding a premature translational termination at desired targets. This study will open a new opportunity to perform base editing with Type IV UDGs in archaea and green algae.


Assuntos
Cianobactérias , Uracila-DNA Glicosidase , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Edição de Genes , DNA , Reparo do DNA , Cianobactérias/genética , Cianobactérias/metabolismo , Citosina
3.
Plant Biotechnol J ; 18(9): 1860-1868, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31960579

RESUMO

Designing synthetic pathways for efficient CO2 fixation and conversion is essential for sustainable chemical production. Here we have designed a synthetic acetate-acetyl-CoA/malonyl-CoA (AAM) bypass to overcome an enzymatic activity of pyruvate dehydrogenase complex. This synthetic pathway utilizes acetate assimilation and carbon rearrangements using a methyl malonyl-CoA carboxyltransferase. We demonstrated direct conversion of CO2 into acetyl-CoA-derived acetone as an example in photosynthetic Synechococcus elongatus PCC 7942 by increasing the acetyl-CoA pools. The engineered cyanobacterial strain with the AAM-bypass produced 0.41 g/L of acetone at 0.71 m/day of molar productivity. This work clearly shows that the synthetic pyruvate dehydrogenase bypass (AAM-bypass) is a key factor for the high-level production of an acetyl-CoA-derived chemical in photosynthetic organisms.


Assuntos
Acetona , Engenharia Metabólica , Dióxido de Carbono , Oxirredutases , Piruvatos , Synechococcus
4.
Planta ; 249(1): 181-193, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30078076

RESUMO

MAIN CONCLUSION: Photosynthetic production of isoprenoids in cyanobacteria is considered in terms of metabolic engineering and biological importance. Metabolic engineering of photosynthetic bacteria (cyanobacteria) has been performed to construct bio-solar cell factories that convert carbon dioxide to various value-added chemicals. Isoprenoids, which are found in nature and range from essential cell components to defensive molecules, have great value in cosmetics, pharmaceutics, and biofuels. In this review, we summarize the recent engineering of cyanobacteria for photosynthetic isoprenoids production as well as carbon molar basis comparisons with heterotrophic isoprenoids production in engineered Escherichia coli.


Assuntos
Dióxido de Carbono/metabolismo , Cianobactérias/metabolismo , Engenharia Metabólica/métodos , Fotossíntese/fisiologia , Terpenos/metabolismo
5.
Biotechnol Bioeng ; 115(8): 2067-2074, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29704438

RESUMO

Combinatorial metabolic engineering enabled the development of efficient microbial cell factories for modulating gene expression to produce desired products. Here, we report the combinatorial metabolic engineering of Corynebacterium glutamicum to produce butyrate by introducing a synthetic butyrate pathway including phosphotransferase and butyrate kinase reactions and repressing the essential acn gene-encoding aconitase, which has been targeted for downregulation in a genome-scale model. An all-in-one clustered regularly interspaced short palindromic repeats interference system for C. glutamicum was used for tunable downregulation of acn in an engineered strain, where by-product-forming reactions were deleted and the synthetic butyrate pathway was inserted, resulting in butyrate production (0.52 ± 0.02 g/L). Subsequently, biotin limitation enabled the engineered strain to produce butyrate (0.58 ± 0.01 g/L) without acetate formation for the entire duration of the culture. These results demonstrate the potential homo-production of butyrate using engineered C. glutamicum. This method can also be applied to other industrial microorganisms.


Assuntos
Butiratos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Edição de Genes/métodos , Engenharia Metabólica/métodos , Vias Biossintéticas/genética , Regulação Bacteriana da Expressão Gênica
6.
Microb Cell Fact ; 17(1): 4, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316926

RESUMO

BACKGROUND: The construction of microbial cell factories requires cost-effective and rapid strain development through metabolic engineering. Recently, RNA-guided CRISPR technologies have been developed for metabolic engineering of industrially-relevant host. RESULTS: To demonstrate the application of the CRISPR interference (CRISPRi), we developed two-plasmid CRISPRi vectors and applied the CRISPRi in Corynebacterium glutamicum to repress single target genes and double target genes simultaneously. Four-different single genes (the pyc, gltA, idsA, and glgC genes) repressions were successfully performed using the CRISPRi vectors, resulting significant mRNA reductions of the targets compared to a control. Subsequently, the phenotypes for the target gene-repressed strains were analyzed, showing the expected cell growth behaviors with different carbon sources. In addition, double gene repression (the idsA and glgC genes in a different order) by the CRISPRi resulted in an independent gene repression to each target gene simultaneously. To demonstrate an industrial application of the CRISPRi, citrate synthase (CS)-targeting DM1919 (L-lysine producer) strains with a sgRNA-gltA-r showed reduced CS activity, resulting in the improvement of L-lysine yield by 1.39-fold than the parental DM1919 (a lysine producer). CONCLUSIONS: Single or double gene repression were successfully performed using the CRISPRi vectors and sequence specific sgRNAs. The CRISPRi can be applied for multiplex metabolic engineering to enhanced lysine production and it will promote the further rapid development of microbial cell factories of C. glutamicum.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Corynebacterium glutamicum/genética , Inativação Gênica/fisiologia , RNA Guia de Cinetoplastídeos/genética , Biologia Sintética/métodos , Sistemas CRISPR-Cas , Citrato (si)-Sintase/genética , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Engenharia Metabólica/métodos , Plasmídeos
7.
Appl Microbiol Biotechnol ; 102(22): 9471-9480, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30238140

RESUMO

The goal of sustainable production of biochemicals and biofuels has driven the engineering of microbial cell as factories that convert low-value substrates to high-value products. Xylose is the second most abundant sugar substrate in lignocellulosic hydrolysates. We analyzed the mechanisms of xylose metabolism using genome sequencing data of 492 industrially relevant bacterial species in the mini-review. The analysis revealed the xylose isomerase and Weimberg pathways as the major routes across diverse routes of bacterial xylose metabolism. In addition, we discuss recent developments in metabolic engineering of xylose metabolism in industrial microorganisms. Genome-scale analyses have revealed xylose pathway-specific flux landscapes. Overall, a comprehensive understanding of bacterial xylose metabolism could be useful for the feasible development of microbial cell factories.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Microbiologia Industrial , Engenharia Metabólica , Xilose/metabolismo
8.
Metab Eng ; 44: 325-336, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29129823

RESUMO

Inducible gene expression systems are widely used in microbial host strains for protein and commodity chemical production because of their extensive characterization and ease of use. However, some of these systems have disadvantages such as leaky expression, lack of dynamic control, and the prohibitively high costs of inducers associated with large-scale production. Quorum sensing (QS) systems in bacteria control gene expression in response to population density, and the LuxI/R system from Vibrio fischeri is a well-studied example. A QS system could be ideal for biofuel production strains as it is self-regulated and does not require the addition of inducer compounds, which reduce operational costs for inducer. In this study, a QS system was developed for inducer-free production of the biofuel compound bisabolene from engineered E. coli. Seven variants of the Sensor plasmid, which carry the luxI-luxR genes, and four variants of the Response plasmid, which carry bisabolene producing pathway genes under the control of the PluxI promoter, were designed for optimization of bisabolene production. Furthermore, a chromosome-integrated QS strain was engineered with the best combination of Sensor and Response plasmid and produced bisabolene at a titer of 1.1g/L without addition of external inducers. This is a 44% improvement from our previous inducible system. The QS strain also displayed higher homogeneity in gene expression and isoprenoid production compared to an inducible-system strain.


Assuntos
Aliivibrio fischeri/genética , Escherichia coli , Engenharia Metabólica , Percepção de Quorum , Proteínas Repressoras , Sesquiterpenos/metabolismo , Transativadores , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo
9.
Appl Microbiol Biotechnol ; 101(7): 2821-2830, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28078395

RESUMO

Conversion of crude glycerol derived from biodiesel processes to value-added chemicals has attracted much attention. Herein, Raoultella ornithinolytica B6 was investigated for the high production of 2,3-butanediol (2,3-BD) from glycerol without 1,3-propanediol (1,3-PD) formation, a by-product hindering 2,3-BD purification. By evaluating the effects of temperature, agitation speed, and pH control strategy, the fermentation conditions favoring 2,3-BD production were found to be 25 °C, 400 rpm, and pH control with a lower limit of 5.5, respectively. Notably, significant pH fluctuations which positively affect 2,3-BD production were generated by simply controlling the lower pH limit at 5.5. In fed-batch fermentation under those conditions, R. ornithinolytica B6 produced 2,3-BD up to 79.25 g/L, and further enhancement of 2,3-BD production (89.45 g/L) was achieved by overexpressing homologous 2,3-BD synthesis genes (the budABC). When pretreated crude glycerol was used as a sole carbon source, R. ornithinolytica B6 overexpressing budABC produced 78.10 g/L of 2,3-BD with the yield of 0.42 g/g and the productivity of 0.62 g/L/h. The 2,3-BD titer, yield, and productivity values obtained in this study are the highest 2,3-BD production from glycerol among 1,3-PD synthesis-deficient 2,3-BD producers, demonstrating R. ornithinolytica B6 as a promising 2,3-BD producer from glycerol.


Assuntos
Butileno Glicóis/metabolismo , Enterobacteriaceae/metabolismo , Glicerol/metabolismo , Propilenoglicóis/metabolismo , Biocombustíveis , Reatores Biológicos , Carbono/metabolismo , Meios de Cultura/química , Fermentação , Concentração de Íons de Hidrogênio , Temperatura
10.
Plant Biotechnol J ; 14(8): 1768-76, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26879003

RESUMO

Capture and conversion of CO2 to valuable chemicals is intended to answer global challenges on environmental issues, climate change and energy security. Engineered cyanobacteria have been enabled to produce industry-relevant chemicals from CO2 . However, the final products from cyanobacteria have often been mixed with fermented metabolites during dark fermentation. In this study, our engineering of Synechococcus elongatus PCC 7942 enabled continuous conversion of CO2 to volatile acetone as sole product. This process occurred during lighted, aerobic culture via both ATP-driven malonyl-CoA synthesis pathway and heterologous phosphoketolase (PHK)-phosphotransacetylase (Pta) pathway. Because of strong correlations between the metabolic pathways of acetate and acetone, supplying the acetyl-CoA directly from CO2 in the engineered strain, led to sole production of acetone (22.48 mg/L ± 1.00) without changing nutritional constraints, and without an anaerobic shift. Our engineered S. elongatus strains, designed for acetone production, could be modified to create biosolar cell factories for sustainable photosynthetic production of acetyl-CoA-derived biochemicals.


Assuntos
Acetona/metabolismo , Aldeído Liases/metabolismo , Dióxido de Carbono/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Trifosfato de Adenosina/metabolismo , Aerobiose , Aldeído Liases/genética , Biotecnologia/instrumentação , Biotecnologia/métodos , Coenzima A/metabolismo , Engenharia Genética/métodos , Luz , Redes e Vias Metabólicas , Fotobiorreatores , Fotossíntese
11.
Microb Cell Fact ; 15: 20, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801253

RESUMO

BACKGROUND: An efficient microbial cell factory requires a microorganism that can utilize a broad range of substrates to economically produce value-added chemicals and fuels. The industrially important bacterium Corynebacterium glutamicum has been studied to broaden substrate utilizations for lignocellulose-derived sugars. However, C. glutamicum ATCC 13032 is incapable of PTS-dependent utilization of cellobiose because it has missing genes annotated to ß-glucosidases (bG) and cellobiose-specific PTS permease. RESULTS: We have engineered and evolved a cellobiose-negative and xylose-negative C. glutamicum that utilizes cellobiose as sole carbon and co-ferments cellobiose and xylose. NGS-genomic and DNA microarray-transcriptomic analysis revealed the multiple genetic mutations for the evolved cellobiose-utilizing strains. As a result, a consortium of mutated transporters and metabolic and auxiliary proteins was responsible for the efficient cellobiose uptake. Evolved and engineered strains expressing an intracellular bG showed a better rate of growth rate on cellobiose as sole carbon source than did other bG-secreting or bG-displaying C. glutamicum strains under aerobic culture. Our strain was also capable of co-fermenting cellobiose and xylose without a biphasic growth, although additional pentose transporter expression did not enhance the xylose uptake rate. We subsequently assessed the strains for simultaneous saccharification and fermentation of cellulosic substrates derived from Canadian Ponderosa Pine. CONCLUSIONS: The combinatorial strategies of metabolic engineering and adaptive evolution enabled to construct C. glutamicum strains that were able to co-ferment cellobiose and xylose. This work could be useful in development of recombinant C. glutamicum strains for efficient lignocellulosic-biomass conversion to produce value-added chemicals and fuels.


Assuntos
Celobiose/metabolismo , Corynebacterium glutamicum/metabolismo , Xilose/metabolismo , Engenharia Metabólica/métodos
12.
Biotechnol Lett ; 37(9): 1837-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26026964

RESUMO

OBJECTIVE: To produce butyric acid from red algae such as Gelidium amansii in which galactose is a main carbohydrate, microorganisms utilizing galactose and tolerating inhibitors in hydrolysis including levulinic acid and 5-hydroxymethylfurfural (HMF) are required. RESULTS: A newly isolated bacterium, Clostridium sp. S1 produced butyric acid not only from galactose as the sole carbon source but also from a mixture of galactose and glucose through simultaneous utilization. Notably, Clostridium sp. S1 produced butyric acid and a small amount of acetic acid with the butyrate:acetate ratio of 45.4:1 and it even converted acetate to butyric acid. Clostridium sp. S1 tolerated 0.5-2 g levulinic acid/l and recovered from HMF inhibition at 0.6-2.5 g/l, resulting in 85-92% butyric acid concentration of the control culture. When acid-pretreated G. amansii hydrolysate was used, Clostridium sp. S1 produced 4.83 g butyric acid/l from 10 g galactose/l and 1 g glucose/l. CONCLUSION: Clostridium sp. S1 produces butyric acid from red algae due to its characteristics in sugar utilization and tolerance to inhibitors, demonstrating its advantage as a red algae-utilizing microorganism.


Assuntos
Ácido Butírico/metabolismo , Clostridium/isolamento & purificação , Rodófitas/química , Clostridium/genética , Clostridium/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Ácidos Levulínicos/farmacologia , Filogenia , Extratos Vegetais/química
13.
Appl Microbiol Biotechnol ; 98(13): 5991-6002, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24706215

RESUMO

Currently, the majority of tools in synthetic biology have been designed and constructed for model organisms such as Escherichia coli and Saccharomyces cerevisiae. In order to broaden the spectrum of organisms accessible to such tools, we established a synthetic biological platform, called CoryneBrick, for gene expression in Corynebacterium glutamicum as a set of E. coli-C. glutamicum shuttle vectors whose elements are interchangeable with BglBrick standard parts. C. glutamicum is an established industrial microorganism for the production of amino acids, proteins, and commercially promising chemicals. Using the CoryneBrick vectors, we showed various time-dependent expression profiles of a red fluorescent protein. This CoryneBrick platform was also applicable for two-plasmid expression systems with a conventional C. glutamicum expression vector. In order to demonstrate the practical application of the CoryneBrick vectors, we successfully reconstructed the xylose utilization pathway in the xylose-negative C. glutamicum wild type by fast BglBrick cloning methods using multiple genes encoding for xylose isomerase and xylulose kinase, resulting in a growth rate of 0.11 ± 0.004 h(-1) and a xylose uptake rate of 3.35 mmol/gDW/h when 1 % xylose was used as sole carbon source. Thus, CoryneBrick vectors were shown to be useful engineering tools in order to exploit Corynebacterium as a synthetic platform for the production of chemicals by controllable expression of the genes of interest.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Expressão Gênica , Redes Reguladoras de Genes , Biologia Sintética/métodos , Xilose/metabolismo , DNA Bacteriano/genética , Genes Reporter , Vetores Genéticos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Proteína Vermelha Fluorescente
14.
Biotechnol Lett ; 36(10): 2069-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24930112

RESUMO

Pinene is a monoterpenes (C10) that is produced in a genetically-engineered microbial host for its industrial applications in fragrances, flavoring agents, pharmaceuticals, and biofuels. Herein, we have metabolically-engineered Corynebacterium glutamicum, to produce pinene and studied its toxicity in C. glutamicum. Geranyl diphosphate synthases (GPPS) and pinene synthases (PS), obtained from Pinus taeda and Abies grandis, were co-expressed with over-expressed native 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and isopentenyl diphosphate isomerase (Idi) from C. glutamicum using CoryneBrick vector. Most strains expressing PS-GPPSs produced detectable amounts of pinene, but co-expression of DXS and IDI with PS (P. taeda) and GPPS (A. grandis) resulted in 27 µg ± 7 α-pinene g(-1) cell dry weight, which is the first report in C. glutamicum. Further engineering of PS and GPPS in the C. glutamicum strain may increase pinene production.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/genética , Glucose/metabolismo , Engenharia Metabólica , Monoterpenos/metabolismo , Proteínas de Bactérias/genética , Monoterpenos Bicíclicos , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/metabolismo , Monoterpenos/toxicidade , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
15.
Trends Biotechnol ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38402137

RESUMO

Laboratory automation with robot-assisted processes enhances synthetic biology, but its economic impact on projects is uncertain. We have proposed an experiment price index (EPI) for a quantitative comparison of factors in time, cost, and sample numbers, helping measure the efficiency of laboratory automation in synthetic biology and biomolecular engineering.

16.
J Agric Food Chem ; 70(46): 14755-14760, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36374274

RESUMO

Corynebacterium glutamicum is widely used for a large-scale industrial producer of feed additive amino acids, such as l-lysine. Moreover, C. glutamicum has been engineered for producing various non-native chemicals, including terpenes. For the first time, C. glutamicum was engineered for co-production of l-lysine and heterologous squalene. To control metabolic fluxes for either the l-lysine biosynthesis pathway or the squalene biosynthesis pathway, pyruvate, an intermediate in the central metabolism, a node was regulated by a clustered regularly interspaced short palindromic repeat (CRISPR) interference system. Repressing pyc encoding for pyruvate carboxylase in the l-lysine producer (DM1919) and its derivatives resulted in 99.24 ± 7.63 mg/L total squalene and 6.25 ± 0.20 g/L extracellular lysine at 120 h. Furthermore, various oil overlays were tested for efficient co-productions. In situ extraction with corn oil (10%, v/v) exhibited a separation of 99.75% (w/v) of total squalene (intra- and extracellular squalene), while l-lysine can be secreted in the medium. This co-production strategy will help a potential bioprocess of amino acid production with various terpenes.


Assuntos
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Lisina/metabolismo , Esqualeno/metabolismo , Vias Biossintéticas , Aminoácidos/metabolismo , Engenharia Metabólica
17.
ACS Synth Biol ; 11(10): 3538-3543, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36173735

RESUMO

Lab automation has facilitated synthetic biology applications in an automated workflow, and biofoundry facilities have enabled automated high-throughput experiments of gene cloning and genome engineering to be conducted following a precise experimental design and protocol. However, before-experiment procedures in biofoundry applications have been underdetermined. We aimed to develop a Python-based planning-assistant software, namely Biofoundry Palette, for liquid handler-based experimentation and operation in the biofoundry workflow. Depending on the synthetic biology project, variable information and content information may vary; the Biofoundry Palette provides precise information for the before-experiment units for each process module in the biofoundry workflow. As a demonstration, more than 200 unique information sets, generated by Biofoundry Palette, were used in automated gene cloning or pathway construction. The information on planning and management can potentially help the operator faithfully execute the biofoundry workflow after securing the before-experiment unit, thereby lowering the risk of human errors and performing successful biofoundry operations for synthetic biology applications.


Assuntos
Projetos de Pesquisa , Software , Humanos , Fluxo de Trabalho , Biologia Sintética/métodos , Automação/métodos
18.
ACS Synth Biol ; 11(5): 1719-1726, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35502843

RESUMO

Controlling translational elongation is essential for efficient protein synthesis. Ribosome profiling has revealed that the speed of ribosome movement is correlated with translational efficiency in the translational elongation ramp. In this work, we present a new deep learning model, called DeepTESR, to predict the degree of translational elongation short ramp (TESR) from mRNA sequence. The proposed deep learning model exhibited superior performance in predicting the TESR scores for 226 981 TESR sequences, resulting in the mean absolute error (MAE) of 0.285 and a coefficient of determination R2 of 0.627, superior to the conventional machine learning models (e.g., MAE of 0.335 and R2 of 0.571 for LightGBM). We experimentally validated that heterologous fluorescence expression of proteins with randomly selected TESR was moderately correlated with the predictions. Furthermore, a genome-wide analysis of TESR prediction in the 4305 coding sequences of Escherichia coli showed conserved TESRs over the clusters of orthologous groups. In this sense, DeepTESR can be used to predict the degree of TESR for gene expression control and to decipher the mechanism of translational control with ribosome profiling. DeepTESR is available at https://github.com/fmblab/DeepTESR.


Assuntos
Aprendizado Profundo , Escherichia coli/genética , Escherichia coli/metabolismo , Elongação Traducional da Cadeia Peptídica/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
19.
ACS Synth Biol ; 11(3): 1336-1348, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35167276

RESUMO

Efficient and versatile DNA assembly frameworks have had an impact on promoting synthetic biology to build complex biological systems. To accelerate system development, laboratory automation (or biofoundry) provides an opportunity to construct organisms and DNA assemblies via computer-aided design. However, a modular cloning (MoClo) system for multiple DNA assemblies limits the biofoundry workflow in terms of simplicity and feasibility by preparing the number of cloning materials such as destination vectors prior to the automation process. Herein, we propose robot-assisted MoClo (RoboMoClo) to accelerate a synthetic biology project with multiple gene expressions at the biofoundry. The architecture of the RoboMoClo framework provides a hybrid strategy of hierarchical gene assembly and iterative gene assembly, and fewer destination vectors compared with other MoClo systems. An industrial bacterium, Corynebacterium glutamicum, was used as a model host for RoboMoClo. After building a biopart library (promoter and terminator; level 0) and evaluating its features (level 1), various transcriptional directions in multiple gene assemblies (level 2) were studied using the RoboMoClo vectors. Among the constructs, the convergent construct exhibited potential transcriptional interference through the collision of RNA polymerases. To study design of experiment-guided lycopene biosynthesis in C. glutamicum (levels 1, 2, and 3), the biofoundry-assisted multiple gene assembly was demonstrated as a proof-of-concept by constructing various sub-pathway units (level 2) and pathway units (level 3) for C. glutamicum. The RoboMoClo framework provides an improved MoClo toolkit for laboratory automation in a synthetic biology application.


Assuntos
Engenharia Genética , Biologia Sintética , Clonagem Molecular , DNA/genética , Biblioteca Gênica , Vetores Genéticos/genética
20.
Microbiol Spectr ; 10(6): e0376022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36374037

RESUMO

Genome editing technology is a powerful tool for programming microbial cell factories. However, rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of the bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we demonstrate the genome engineering of Corynebacterium glutamicum as a GC-rich model industrial bacterium by generating premature termination codons (PTCs) in desired genes using high-fidelity cytosine base editors (CBEs). Through this CBE-STOP approach of introducing specific cytosine conversions, we constructed several single-gene-inactivated strains for three genes (ldh, idsA, and pyc) with high base editing efficiencies of average 95.6% (n = 45, C6 position) and the highest success rate of up to 100% for PTCs and ultimately developed a strain with five genes (ldh, actA, ackA, pqo, and pta) that were inactivated sequentially for enhancing succinate production. Although these mutant strains showed the desired phenotypes, whole-genome sequencing (WGS) data revealed that genome-wide point mutations occurred in each strain and further accumulated according to the duration of CBE plasmids. To lower the undesirable mutations, high-fidelity CBEs (pCoryne-YE1-BE3 and pCoryne-BE3-R132E) was employed for single or multiplexed genome editing in C. glutamicum, resulting in drastically reduced sgRNA-independent off-targets. Thus, we provide a CRISPR-assisted bacterial genome engineering tool with an average high efficiency of 90.5% (n = 76, C5 or C6 position) at the desired targets. IMPORTANCE Rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we identified the DNA off-targets for single and multiple genome engineering of the industrial bacterium Corynebacterium glutamicum using whole-genome sequencing. Further, we developed the high-fidelity (HF)-CBE with significantly reduced off-targets with comparable efficiency and precision. We believe that our DNA off-target analysis and the HF-CBE can promote CRISPR-assisted genome engineering over conventional gene manipulation tools by providing a markerless genetic tool without need for a foreign DNA donor.


Assuntos
Corynebacterium glutamicum , Edição de Genes , Animais , Ratos , Edição de Genes/métodos , Corynebacterium glutamicum/genética , Citosina , Mutação , DNA/genética , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , Desaminase APOBEC-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA