Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
FASEB J ; 28(6): 2566-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24599970

RESUMO

Testosterone (T), alone or in combination with progestin, provides a promising approach to hormonal male contraception. Its principle relies on enhanced negative feedback of exogenous T to suppress gonadotropins, thereby blocking the testicular T production needed for spermatogenesis, while simultaneously maintaining the extragonadal androgen actions, such as potency and libido, to avoid hypogonadism. A serious drawback of the treatment is that a significant proportion of men do not reach azoospermia or severe oligozoospermia, commensurate with contraceptive efficacy. We tested here, using hypogonadal luteinizing hormone/choriongonadotropin receptor (LHCGR) knockout (LHR(-/-)) mice, the basic principle of the T-based male contraceptive method, that a specific T dose could maintain extragonadal androgen actions without simultaneously activating spermatogenesis. LHR(-/-) mice were treated with increasing T doses, and the responses of their spermatogenesis and extragonadal androgen actions (including gonadotropin suppression and sexual behavior) were assessed. Conspicuously, all dose responses to T were practically superimposable, and no dose of T could be defined that would maintain sexual function and suppress gonadotropins without simultaneously activating spermatogenesis. This finding, never addressed in clinical contraceptive trials, is not unexpected in light of the same androgen receptor mediating androgen actions in all organs. When extrapolated to humans, our findings may jeopardize the current approach to hormonal male contraception and call for more effective means of inhibiting intratesticular T production or action, to achieve consistent spermatogenic suppression.


Assuntos
Anticoncepção/métodos , Espermatogênese/efeitos dos fármacos , Testosterona/administração & dosagem , Animais , Azoospermia/induzido quimicamente , Gonadotropinas/antagonistas & inibidores , Gonadotropinas/sangue , Hormônio Luteinizante/genética , Masculino , Camundongos , Camundongos Knockout , Receptores do LH/genética , Comportamento Sexual Animal/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testosterona/farmacologia
2.
Cancer ; 118(7): 1856-67, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21887680

RESUMO

BACKGROUND: Osteosarcoma is the most common malignant bone tumor in children and young people. Efficacy of multiagent MAP (methotrexate, doxorubicin [Adriamycin], cisplatin) chemotherapy may be influenced by multiple cellular pathways. This pilot study aimed to investigate the association of 36 candidate genetic polymorphisms in MAP pathway genes with histological response, survival, and grade 3-4 chemotherapy toxicity in osteosarcoma. METHODS: Blood samples were obtained from 60 patients who had completed MAP chemotherapy. All patients were manually genotyped for 5 polymorphisms. The remaining 31 polymorphisms were genotyped in 50 patients using the Illumina 610-Quad microarray. Associations between candidate polymorphisms and histological response, progression-free survival, and toxicity were estimated using Pearson chi-square and Fisher exact tests, the Kaplan-Meier method, the log-rank test, and the Cox proportional hazards model. RESULTS: Poor histological response was increased in variants of ABCC2 c.24C>T (P = .011) and GSTP1 c.313A>G p.Ile(105)Val (P = .009), whereas MTHFD1 c.1958G>A p.Arg(653)Gln was protective (P = .03). Methotrexate toxicity was increased in variants of MTHFR c.1298A>C p.Glu(429)Ala (P = .038), ABCB1 c.3435T>C Ile(145)Ile (P = .027), and ABCC2 c.3563T>A p.Val(1188)Glu (P = .028). Variants of GSTP1 c.313A>G p.Ile(105)Val were at increased risk of myelosuppression (P = .024) and cardiac damage (P = .008). CONCLUSIONS: This pilot study represents the most comprehensive study to date examining the role of genetic polymorphisms in osteosarcoma. Although small and retrospective, it shows that several polymorphisms appear to significantly influence toxicity and clinical outcome. These deserve prospective validation in the hope of optimizing treatment for resistant disease and reducing the late effects burden.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Polimorfismo Genético , Adolescente , Adulto , Neoplasias Ósseas/mortalidade , Criança , Cisplatino/uso terapêutico , Intervalo Livre de Doença , Doxorrubicina/uso terapêutico , Feminino , Genótipo , Células Germinativas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mitomicina/uso terapêutico , Proteína 2 Associada à Farmacorresistência Múltipla , Osteossarcoma/mortalidade , Projetos Piloto , Resultado do Tratamento
3.
Neurology ; 80(22): 2042-8, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23645593

RESUMO

OBJECTIVES: Previous associations between mitochondrial DNA (mtDNA) and idiopathic Parkinson disease (PD) have been inconsistent and contradictory. Our aim was to resolve these inconsistencies and determine whether mtDNA has a significant role in the risk of developing PD. METHODS: Two-stage genetic association study of 138 common mtDNA variants in 3,074 PD cases and 5,659 ethnically matched controls followed by meta-analysis of 6,140 PD cases and 13,280 controls. RESULTS: In the association study, m.2158T>C and m.11251A>G were associated with a reduced risk of PD in both the discovery and replication cohorts. None of the common European mtDNA haplogroups were consistently associated with PD, but pooling of discovery and replication cohorts revealed a protective association with "super-haplogroup" JT. In the meta-analysis, there was a reduced risk of PD with haplogroups J, K, and T and super-haplogroup JT, and an increase in the risk of PD with super-haplogroup H. CONCLUSIONS: In a 2-stage association study of mtDNA variants and PD, we confirm the reduced risk of PD with super-haplogroup JT and resolve this at the J1b level. Meta-analysis explains the previous inconsistent associations that likely arise through sampling effects. The reduced risk of PD with haplogroups J, K, and T is mirrored by an increased risk of PD in super-haplogroup HV, which increases survival after sepsis. Antagonistic pleiotropy between mtDNA haplogroups may thus be shaping the genetic landscape in humans, leading to an increased risk of PD in later life.


Assuntos
DNA Mitocondrial/genética , Estudos de Associação Genética/métodos , Variação Genética/genética , Doença de Parkinson/genética , Estudos de Coortes , Predisposição Genética para Doença , Humanos , Risco , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA