Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 448(7154): 704-8, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17687326

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expansion of CAG triplet repeats in the huntingtin (HTT) gene (also called HD) and characterized by accumulation of aggregated fragments of polyglutamine-expanded HTT protein in affected neurons. Abnormal enrichment of HD inclusion bodies with ubiquitin, a diagnostic characteristic of HD and many other neurodegenerative disorders including Alzheimer's and Parkinson's diseases, has suggested that dysfunction in ubiquitin metabolism may contribute to the pathogenesis of these diseases. Because modification of proteins with polyubiquitin chains regulates many essential cellular processes including protein degradation, cell cycle, transcription, DNA repair and membrane trafficking, disrupted ubiquitin signalling is likely to have broad consequences for neuronal function and survival. Although ubiquitin-dependent protein degradation is impaired in cell-culture models of HD and of other neurodegenerative diseases, it has not been possible to evaluate the function of the ubiquitin-proteasome system (UPS) in HD patients or in animal models of the disease, and a functional role for UPS impairment in neurodegenerative disease pathogenesis remains controversial. Here we exploit a mass-spectrometry-based method to quantify polyubiquitin chains and demonstrate that the abundance of these chains is a faithful endogenous biomarker of UPS function. Lys 48-linked polyubiquitin chains accumulate early in pathogenesis in brains from the R6/2 transgenic mouse model of HD, from a knock-in model of HD and from human HD patients, establishing that UPS dysfunction is a consistent feature of HD pathology. Lys 63- and Lys 11-linked polyubiquitin chains, which are not typically associated with proteasomal targeting, also accumulate in the R6/2 mouse brain. Thus, HD is linked to global changes in the ubiquitin system to a much greater extent than previously recognized.


Assuntos
Doença de Huntington/metabolismo , Ubiquitina/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Doença de Huntington/patologia , Corpos de Inclusão/metabolismo , Lisina/metabolismo , Camundongos , Camundongos Transgênicos , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
2.
Hum Mol Genet ; 19(1): 65-78, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19825844

RESUMO

Huntington's disease (HD) is a late-onset neurodegenerative disorder that is characterized neuropathologically by the presence of neuropil aggregates and nuclear inclusions. However, the profile of aggregate structures that are present in the brains of HD patients or of HD mouse models and the relative contribution of specific aggregate structures to disease pathogenesis is unknown. We have used the Seprion ligand to develop a highly sensitive enzyme-linked immunosorbent assay (ELISA)-based method for quantifying aggregated polyglutamine in tissues from HD mouse models. We used a combination of electron microscopy, atomic force microscopy (AFM) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) to investigate the aggregate structures isolated by the ligand. We found that the oligomeric, proto-fibrillar and fibrillar aggregates extracted from the brains of R6/2 and HdhQ150 knock-in mice were remarkably similar. Using AFM, we determined that the nanometre globular oligomers isolated from the brains of both mouse models have dimensions identical to those generated from recombinant huntingtin exon 1 proteins. Finally, antibodies that detect exon 1 Htt epitopes differentially recognize the ligand-captured material on SDS-PAGE gels. The Seprion-ligand ELISA provides an assay with good statistical power for use in preclinical pharmacodynamic therapeutic trials or to assess the effects of the genetic manipulation of potential therapeutic targets on aggregate load. This, together with the ability to identify a spectrum of aggregate species in HD mouse tissues, will contribute to our understanding of how these structures relate to the pathogenesis of HD and whether their formation can be manipulated for therapeutic benefit.


Assuntos
Encéfalo/patologia , Técnicas de Introdução de Genes , Doença de Huntington/patologia , Filamentos do Neurópilo/patologia , Animais , Bioensaio , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Éxons/genética , Ligantes , Camundongos , Microscopia de Força Atômica , Microscopia Imunoeletrônica , Filamentos do Neurópilo/ultraestrutura , Peptídeos/metabolismo , Fenótipo , Estrutura Quaternária de Proteína , Proteínas da Membrana Plasmática de Transporte de Serotonina/ultraestrutura
3.
Hum Mol Genet ; 19(9): 1756-65, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20147317

RESUMO

Huntingtin protein (Htt) is ubiquitously expressed, yet Huntington's disease (HD), a fatal neurologic disorder produced by expansion of an Htt polyglutamine tract, is characterized by neurodegeneration that occurs primarily in the striatum and cerebral cortex. Such discrepancies between sites of expression and pathology occur in multiple neurodegenerative disorders associated with expanded polyglutamine tracts. One possible reason is that disease-modifying factors are tissue-specific. Here, we show that the striatum-enriched protein, CalDAG-GEFI, is severely down-regulated in the striatum of mouse HD models and is down-regulated in HD individuals. In the R6/2 transgenic mouse model of HD, striatal neurons with the largest aggregates of mutant Htt have the lowest levels of CalDAG-GEFI. In a brain-slice explant model of HD, knock-down of CalDAG-GEFI expression rescues striatal neurons from pathology induced by transfection of polyglutamine-expanded Htt exon 1. These findings suggest that the striking down-regulation of CalDAG-GEFI in HD could be a protective mechanism that mitigates Htt-induced degeneration.


Assuntos
Corpo Estriado/metabolismo , Regulação para Baixo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Doença de Huntington/metabolismo , Animais , Corpo Estriado/patologia , Humanos , Proteína Huntingtina , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Ratos , Ratos Sprague-Dawley
4.
J Biol Chem ; 285(12): 8808-23, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20086007

RESUMO

Huntingtin proteolysis has been implicated in the molecular pathogenesis of Huntington disease (HD). Despite an intense effort, the identity of the pathogenic smallest N-terminal fragment has not been determined. Using a panel of anti-huntingtin antibodies, we employed an unbiased approach to generate proteolytic cleavage maps of mutant and wild-type huntingtin in the HdhQ150 knock-in mouse model of HD. We identified 14 prominent N-terminal fragments, which, in addition to the full-length protein, can be readily detected in cytoplasmic but not nuclear fractions. These fragments were detected at all ages and are not a consequence of the pathogenic process. We demonstrated that the smallest fragment is an exon 1 huntingtin protein, known to contain a potent nuclear export signal. Prior to the onset of behavioral phenotypes, the exon 1 protein, and possibly other small fragments, accumulate in neuronal nuclei in the form of a detergent insoluble complex, visualized as diffuse granular nuclear staining in tissue sections. This methodology can be used to validate the inhibition of specific proteases as therapeutic targets for HD by pharmacological or genetic approaches.


Assuntos
Doença de Huntington/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Animais , Células COS , Calpaína/química , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Modelos Animais de Doenças , Éxons , Genótipo , Proteína Huntingtina , Camundongos , Estrutura Terciária de Proteína
5.
Nat Cell Biol ; 4(3): 240-5, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11854752

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder. Here we demonstrate that expression of arfaptin 2/POR1 (partner of Rac1) in cultured cells induces the formation of pericentriolar and nuclear aggregates, which morphologically resemble mutant huntingtin aggregates characteristic of HD. Endogenous arfaptin 2 localizes to aggregates induced by expression of an abnormal amino-terminal fragment of huntingtin that contains polyglutamine (polyQ) expansions. A dominant inhibitory mutant of arfaptin 2 inhibits aggregation of mutant huntingtin, but not in the presence of proteasome inhibitors. Using cell-free biochemical assays, we show that arfaptin 2 inhibits proteasome activity. Finally, we show that expression of arfaptin 2 is increased at sites of neurodegeneration and the protein localizes to huntingtin aggregates in HD transgenic mouse brains. Our data suggest that arfaptin 2 is involved in regulating huntingtin protein aggregation, possibly by impairing proteasome function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células CHO , Proteínas de Transporte/genética , Cricetinae , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Substâncias Macromoleculares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Microscopia Imunoeletrônica , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Células PC12 , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
6.
Mol Cell Proteomics ; 8(4): 720-34, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19043139

RESUMO

Huntington disease (HD) is fatal in humans within 15-20 years of symptomatic disease. Although late stage HD has been studied extensively, protein expression changes that occur at the early stages of disease and during disease progression have not been reported. In this study, we used a large two-dimensional gel/mass spectrometry-based proteomics approach to investigate HD-induced protein expression alterations and their kinetics at very early stages and during the course of disease. The murine HD model R6/2 was investigated at 2, 4, 6, 8, and 12 weeks of age, corresponding to absence of disease and early, intermediate, and late stage HD. Unexpectedly the most HD stage-specific protein changes (71-100%) as well as a drastic alteration (almost 6% of the proteome) in protein expression occurred already as early as 2 weeks of age. Early changes included mainly the up-regulation of proteins involved in glycolysis/gluconeogenesis and the down-regulation of the actin cytoskeleton. This suggests a period of highly variable protein expression that precedes the onset of HD phenotypes. Although an up-regulation of glycolysis/gluconeogenesis-related protein alterations remained dominant during HD progression, late stage alterations at 12 weeks showed an up-regulation of proteins involved in proteasomal function. The early changes in HD coincide with a peak in protein alteration during normal mouse development at 2 weeks of age that may be responsible for these massive changes. Protein and mRNA data sets showed a large overlap on the level of affected pathways but not single proteins/mRNAs. Our observations suggest that HD is characterized by a highly dynamic disease pathology not represented by linear protein concentration alterations over the course of disease.


Assuntos
Doença de Huntington/metabolismo , Doença de Huntington/patologia , Proteínas/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Desenvolvimento Embrionário , Metabolismo Energético , Feminino , Regulação da Expressão Gênica , Doença de Huntington/genética , Cinética , Masculino , Redes e Vias Metabólicas , Camundongos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Extratos de Tecidos
7.
Proc Natl Acad Sci U S A ; 105(9): 3467-72, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18299573

RESUMO

Huntington's disease (HD) is caused by a CAG repeat expansion that is unstable upon germ-line transmission and exhibits mosaicism in somatic tissues. We show that region-specific CAG repeat mosaicism profiles are conserved between several mouse models of HD and therefore develop in a predetermined manner. Furthermore, we demonstrate that these synchronous, radical changes in CAG repeat size occur in terminally differentiated neurons. In HD this ongoing mutation of the repeat continuously generates genetically distinct neuronal populations in the adult brain of mouse models and HD patients. The neuronal population of the striatum is particularly distinguished by a high rate of CAG repeat allele instability and expression driving the repeat upwards and would be expected to enhance its toxicity. In both mice and humans, neurons are distinguished from nonneuronal cells by expression of MSH3, which provides a permissive environment for genetic instability independent of pathology. The neuronal mutations described here accumulate to generate genetically discrete populations of cells in the absence of selection. This is in contrast to the traditional view in which genetically discrete cellular populations are generated by the sequence of random variation, selection, and clonal proliferation. We are unaware of any previous demonstration that mutations can occur in terminally differentiated neurons and provide a proof of principle that, dependent on a specific set of conditions, functional DNA polymorphisms can be produced in adult neurons.


Assuntos
Doença de Huntington/etiologia , Neurônios/patologia , Expansão das Repetições de Trinucleotídeos , Animais , Encéfalo/patologia , Diferenciação Celular , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Mitose , Mosaicismo
8.
J Neurochem ; 104(3): 846-58, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17986219

RESUMO

A CAG-repeat gene expansion translated into a pathogenic polyglutamine stretch at the N-terminus of huntingtin triggers Huntington's Disease. Mutated huntingtin is predicted to adopt toxic properties mainly if aggregation-prone N-terminal fragments are released by proteolysis. Huntingtin-aggregates are indeed a major hallmark of this disorder and could represent useful markers of disease-onset or progression. We designed a simple method for qualitative and quantitative characterization of aggregates. For this, we analyzed samples from in vitro and in vivo Huntington's Disease models by agarose gel electrophoresis and showed that in the brain of transgenic mice huntingtin-aggregates became larger as a function of disease progression. This appears to be a property of cytoplasmic but not nuclear aggregates. In cell cultures, treatment with Congo Red inhibited aggregate growth but not total load. Finally, we showed that in primary striatal neurons and in brains of R6/2 and HdhQ150 mice, the presence of aggregates preceded initiation of any other functional deficits. This observation argues for a pathogenic role of huntingtin-aggregation in Huntington's Disease. Our results emphasize that thorough analysis of huntingtin metabolism and aggregation is now feasible, thus significantly improving the power of studies assessing therapies designed to lower huntingtin levels or to interfere with its aggregation.


Assuntos
Doença de Huntington/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Fatores Etários , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Células Cultivadas , Corpo Estriado/patologia , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional/métodos , Embrião de Mamíferos , Feminino , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Camundongos , Camundongos Transgênicos , Mutação/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Gravidez , Frações Subcelulares/metabolismo , Fatores de Tempo , Transfecção/métodos , Expansão das Repetições de Trinucleotídeos/genética
9.
Brain Res Bull ; 72(2-3): 83-97, 2007 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-17352931

RESUMO

The identification of the Huntington's disease (HD) mutation as a CAG/polyglutamine repeat expansion enabled the generation of transgenic rodent models and gene-targeted mouse models of HD. Of these, mice that are transgenic for an N-terminal huntingtin fragment have been used most extensively because they develop phenotypes with relatively early ages of onset and rapid disease progression. Although the fragment models have led to novel insights into the pathophysiology of HD, it is important that models expressing a mutant version of the full-length protein are analysed in parallel. We have generated congenic C57BL/6 and CBA strains for the HdhQ150 knock-in mouse model of HD so that homozygotes can be analysed on an F1 hybrid background. Although a significant impairment in grip strength could be detected from a very early age, the performance of these mice in the quantitative behavioural tests most frequently used in preclinical efficacy trials indicates that they are unlikely to be useful for preclinical screening using a battery of conventional tests. However, at 22 months of age, the Hdh(Q150/Q150) homozygotes showed unexpected widespread aggregate deposition throughout the brain, transcriptional dysregulation in the striatum and cerebellum and decreased levels of specific chaperones, all well-characterised molecular phenotypes present in R6/2 mice aged 12 weeks. Therefore, when strain background and CAG repeat length are controlled for, the knock-in and fragment models develop comparable phenotypes. This supports the continued use of the more high-throughput fragment models to identify mechanisms of pathogenesis and for preclinical screening.


Assuntos
Encéfalo/patologia , Modelos Animais de Doenças , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Camundongos , Animais , Western Blotting , Éxons , Feminino , Proteína Huntingtina , Imuno-Histoquímica , Masculino , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Expansão das Repetições de Trinucleotídeos
10.
PLoS One ; 12(4): e0174264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28388629

RESUMO

Tubulin alpha 8 (Tuba8) is the most divergent member of the highly conserved alpha tubulin family, and uniquely lacks two key post-translational modification sites. It is abundantly expressed in testis and muscle, with lower levels in the brain. We previously identified homozygous hypomorphic TUBA8 mutations in human subjects with a polymicrogyria (PMG) syndrome, suggesting its involvement in development of the cerebral cortex. We have now generated and characterized a Tuba8 knockout mouse model. Homozygous mice were confirmed to lack Tuba8 protein in the testis, but did not display PMG and appeared to be neurologically normal. In response to this finding, we re-analyzed the human PMG subjects using whole exome sequencing. This resulted in identification of an additional homozygous loss-of-function mutation in SNAP29, suggesting that SNAP29 deficiency, rather than TUBA8 deficiency, may underlie most or all of the neurodevelopmental anomalies in these subjects. Nonetheless, in the mouse brain, Tuba8 specifically localised to the cerebellar Purkinje cells, suggesting that the human mutations may affect or modify motor control. In the testis, Tuba8 localisation was cell-type specific. It was restricted to spermiogenesis with a strong acrosomal localization that was gradually replaced by cytoplasmic distribution and was absent from spermatozoa. Although the knockout mice were fertile, the localisation pattern indicated that Tuba8 may have a role in spermatid development during spermatogenesis, rather than as a component of the mature microtubule-rich flagellum itself.


Assuntos
Encéfalo/embriologia , Espermatogênese/genética , Tubulina (Proteína)/genética , Animais , Exoma , Homozigoto , Camundongos , Camundongos Knockout
11.
J Neurosci ; 25(43): 9932-9, 2005 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-16251441

RESUMO

The expansion of a polyglutamine tract in the ubiquitously expressed huntingtin protein causes Huntington's disease (HD), a dominantly inherited neurodegenerative disease. We show that the activity of the cholesterol biosynthetic pathway is altered in HD. In particular, the transcription of key genes of the cholesterol biosynthetic pathway is severely affected in vivo in brain tissue from HD mice and in human postmortem striatal and cortical tissue; this molecular dysfunction is biologically relevant because cholesterol biosynthesis is reduced in cultured human HD cells, and total cholesterol mass is significantly decreased in the CNS of HD mice and in brain-derived ST14A cells in which the expression of mutant huntingtin has been turned on. The transcription of the genes of the cholesterol biosynthetic pathway is regulated via the activity of sterol regulatory element-binding proteins (SREBPs), and we found an approximately 50% reduction in the amount of the active nuclear form of SREBP in HD cells and mouse brain tissue. As a consequence, mutant huntingtin reduces the transactivation of an SRE-luciferase construct even under conditions of SREBP overexpression or in the presence of an exogenous N-terminal active form of SREBP. Finally, the addition of exogenous cholesterol to striatal neurons expressing mutant huntingtin prevents their death in a dose-dependent manner. We conclude that the cholesterol biosynthetic pathway is impaired in HD cells, mice, and human subjects, and that the search for HD therapies should also consider cholesterol levels as both a potential target and disease biomarker.


Assuntos
Colesterol/biossíntese , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Neurônios/fisiologia , Análise de Variância , Animais , Western Blotting/métodos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Imuno-Histoquímica/métodos , Camundongos , Neurônios/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Transporte Proteico/genética , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Tempo , Transfecção/métodos
12.
PLoS One ; 7(9): e44498, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973455

RESUMO

Histone deacetylase (HDAC) inhibitors have received considerable attention as potential therapeutics for a variety of cancers and neurological disorders. Recent publications on a class of pimelic diphenylamide HDAC inhibitors have highlighted their promise in the treatment of the neurodegenerative diseases Friedreich's ataxia and Huntington's disease, based on efficacy in cell and mouse models. These studies' authors have proposed that the unique action of these compounds compared to hydroxamic acid-based HDAC inhibitors results from their unusual slow-on/slow-off kinetics of binding, preferentially to HDAC3, resulting in a distinctive pharmacological profile and reduced toxicity. Here, we evaluate the HDAC subtype selectivity, cellular activity, absorption, distribution, metabolism and excretion (ADME) properties, as well as the central pharmacodynamic profile of one such compound, HDACi 4b, previously described to show efficacy in vivo in the R6/2 mouse model of Huntington's disease. Based on our data reported here, we conclude that while the in vitro selectivity and binding mode are largely in agreement with previous reports, the physicochemical properties, metabolic and p-glycoprotein (Pgp) substrate liability of HDACi 4b render this compound suboptimal to investigate central Class I HDAC inhibition in vivo in mouse per oral administration. A drug administration regimen using HDACi 4b dissolved in drinking water was used in the previous proof of concept study, casting doubt on the validation of CNS HDAC3 inhibition as a target for the treatment of Huntington's disease. We highlight physicochemical stability and metabolic issues with 4b that are likely intrinsic liabilities of the benzamide chemotype in general.


Assuntos
Sistema Nervoso Central/metabolismo , Ataxia de Friedreich/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Doença de Huntington/tratamento farmacológico , Ácidos Pimélicos/farmacologia , Administração Oral , Animais , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Cães , Ataxia de Friedreich/enzimologia , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Doença de Huntington/enzimologia , Células Madin Darby de Rim Canino , Camundongos , Microssomos Hepáticos/metabolismo , Ácidos Pimélicos/administração & dosagem , Ácidos Pimélicos/síntese química , Ácidos Pimélicos/farmacocinética , Ácidos Pimélicos/uso terapêutico , Espectrometria de Massas em Tandem
13.
PLoS One ; 6(11): e27746, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22140466

RESUMO

Huntington's disease (HD) is a progressive neurological disorder for which there are no disease-modifying treatments. Transcriptional dysregulation is a major molecular feature of HD, which significantly contributes to disease progression. Therefore, the development of histone deacetylase (HDAC) inhibitors as therapeutics for HD has been energetically pursued. Suberoylanilide hydroxamic acid (SAHA) - a class I HDAC as well an HDAC6 inhibitor, improved motor impairment in the R6/2 mouse model of HD. Recently it has been found that SAHA can also promote the degradation of HDAC4 and possibly other class IIa HDACs at the protein level in various cancer cell lines. To elucidate whether SAHA is a potent modifier of HDAC protein levels in vivo, we performed two independent mouse trials. Both WT and R6/2 mice were chronically treated with SAHA and vehicle. We found that prolonged SAHA treatment causes the degradation of HDAC4 in cortex and brain stem, but not hippocampus, without affecting its transcript levels in vivo. Similarly, SAHA also decreased HDAC2 levels without modifying the expression of its mRNA. Consistent with our previous data, SAHA treatment diminishes Hdac7 transcript levels in both wild type and R6/2 brains and unexpectedly was found to decrease Hdac11 in R6/2 but not wild type. We investigated the effects of SAHA administration on well-characterised molecular readouts of disease progression. We found that SAHA reduces SDS-insoluble aggregate load in the cortex and brain stem but not in the hippocampus of the R6/2 brains, and that this was accompanied by restoration of Bdnf cortical transcript levels.


Assuntos
Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/enzimologia , Ácidos Hidroxâmicos/uso terapêutico , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Éxons/genética , Histona Desacetilase 2/genética , Histona Desacetilases/genética , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/farmacologia , Camundongos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vorinostat
14.
J Clin Invest ; 121(8): 3306-19, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21785217

RESUMO

Huntington disease (HD) is a devastating neurodegenerative disorder for which there are no disease-modifying treatments. Previous studies have proposed that activation of the heat shock response (HSR) via the transcription factor heat shock factor 1 (HSF1) may be of therapeutic benefit. However, the effect of disease progression on the HSR and the therapeutic potential of this pathway are currently unknown. Here, we used a brain-penetrating HSP90 inhibitor and physiological, molecular, and behavioral readouts to demonstrate that pharmacological activation of HSF1 improves huntingtin aggregate load, motor performance, and other HD-related phenotypes in the R6/2 mouse model of HD. However, the beneficial effects of this treatment were transient and diminished with disease progression. Molecular analyses to understand the transient nature of these effects revealed altered chromatin architecture, reduced HSF1 binding, and impaired HSR accompanied disease progression in both the R6/2 transgenic and HdhQ150 knockin mouse models of HD. Taken together, our findings reveal that the HSR, a major inducible regulator of protein homeostasis and longevity, is disrupted in HD. Consequently, pharmacological induction of HSF1 as a therapeutic approach to HD is more complex than was previously anticipated.


Assuntos
Cromatina/química , Proteínas de Ligação a DNA/fisiologia , Resposta ao Choque Térmico/genética , Doença de Huntington/metabolismo , Fatores de Transcrição/fisiologia , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Regulação para Cima
15.
ACS Chem Biol ; 6(6): 540-6, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21370928

RESUMO

Sirtuin 2 (SIRT2) deacetylase-dependent inhibition mediates neuroprotective reduction of cholesterol biosynthesis in an in vitro Huntington's disease model. This study sought to identify the first brain-permeable SIRT2 inhibitor and to characterize its cholesterol-reducing properties in neuronal models. Using biochemical sirtuin deacetylation assays, we screened a brain-permeable in silico compound library, yielding 3-(1-azepanylsulfonyl)-N-(3-bromphenyl)benzamide as the most potent and selective SIRT2 inhibitor. Pharmacokinetic studies demonstrated brain-permeability but limited metabolic stability of the selected candidate. In accordance with previous observations, this SIRT2 inhibitor stimulated cytoplasmic retention of sterol regulatory element binding protein-2 and subsequent transcriptional downregulation of cholesterol biosynthesis genes, resulting in reduced total cholesterol in primary striatal neurons. Furthermore, the identified inhibitor reduced cholesterol in cultured naïve neuronal cells and brain slices from wild-type mice. The outcome of this study provides a clear opportunity for lead optimization and drug development, targeting metabolic dysfunctions in CNS disorders where abnormal cholesterol homeostasis is implicated.


Assuntos
Encéfalo/metabolismo , Colesterol/biossíntese , Inibidores Enzimáticos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sirtuína 2/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Camundongos , Modelos Neurológicos , Estrutura Molecular , Neurônios/enzimologia , Permeabilidade , Sirtuína 2/metabolismo , Bibliotecas de Moléculas Pequenas , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
PLoS One ; 4(11): e8025, 2009 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-19956633

RESUMO

BACKGROUND: Huntington's disease (HD) is an inherited progressive neurodegenerative disorder caused by a CAG repeat expansion in the ubiquitously expressed HD gene resulting in an abnormally long polyglutamine repeat in the huntingtin protein. Polyglutamine inclusions are a hallmark of the neuropathology of HD. We have previously shown that inclusion pathology is also present in the peripheral tissues of the R6/2 mouse model of HD which expresses a small N-terminal fragment of mutant huntingtin. To determine whether this peripheral pathology is a consequence of the aberrant expression of this N-terminal fragment, we extend this analysis to the genetically precise knock-in mouse model of HD, HdhQ150, which expresses mutant mouse huntingtin. METHODOLOGY/PRINCIPAL FINDINGS: We have previously standardized the CAG repeat size and strain background of the R6/2 and HdhQ150 knock-in mouse models and found that they develop a comparable and widespread neuropathology. To determine whether HdhQ150 knock-in mice also develop peripheral inclusion pathology, homozygous Hdh(Q150/Q150) mice were perfusion fixed at 22 months of age, and tissues were processed for histology and immunohistochemistry with the anti-huntingtin antibody S830. The peripheral inclusion pathology was almost identical to that found in R6/2 mice at 12 weeks of age with minor differences in inclusion abundance. CONCLUSIONS/SIGNIFICANCE: The highly comparable peripheral inclusion pathology that is present in both the R6/2 and HdhQ150 knock-in models of HD indicates that the presence of peripheral inclusions in R6/2 mice is not a consequence of the aberrant expression of an N-terminal huntingtin protein. It remains to be determined whether peripheral inclusions are a pathological feature of the human disease. Both mouse models carry CAG repeats that cause childhood disease in humans, and therefore, inclusion pathology may be a feature of the childhood rather than the adult forms of HD. It is important to establish the extent to which peripheral pathology causes the peripheral symptoms of HD from the perspective of a mechanistic understanding and future treatment options.


Assuntos
Doença de Huntington/genética , Peptídeos/metabolismo , Glândulas Suprarrenais/metabolismo , Animais , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Mucosa Gástrica/metabolismo , Proteína Huntingtina , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Músculo Esquelético/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Estrutura Terciária de Proteína
17.
PLoS One ; 4(6): e5747, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19484127

RESUMO

Huntington's disease (HD) is an inherited, progressive neurological disorder caused by a CAG/polyglutamine repeat expansion, for which there is no effective disease modifying therapy. In recent years, transcriptional dysregulation has emerged as a pathogenic process that appears early in disease progression. Administration of histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) have consistently shown therapeutic potential in models of HD, at least partly through increasing the association of acetylated histones with down-regulated genes and by correcting mRNA abnormalities. The HDAC enzyme through which SAHA mediates its beneficial effects in the R6/2 mouse model of HD is not known. Therefore, we have embarked on a series of genetic studies to uncover the HDAC target that is relevant to therapeutic development for HD. HDAC7 is of interest in this context because SAHA has been shown to decrease HDAC7 expression in cell culture systems in addition to inhibiting enzyme activity. After confirming that expression levels of Hdac7 are decreased in the brains of wild type and R6/2 mice after SAHA administration, we performed a genetic cross to determine whether genetic reduction of Hdac7 would alleviate phenotypes in the R6/2 mice. We found no improvement in a number of physiological or behavioral phenotypes. Similarly, the dysregulated expression levels of a number of genes of interest were not improved suggesting that reduction in Hdac7 does not alleviate the R6/2 HD-related transcriptional dysregulation. Therefore, we conclude that the beneficial effects of HDAC inhibitors are not predominantly mediated through the inhibition of HDAC7.


Assuntos
Histona Desacetilases/genética , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Genótipo , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Fenótipo , Transcrição Gênica
18.
Neurobiol Dis ; 29(1): 41-51, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17920283

RESUMO

Huntington's disease (HD) is a hereditary disorder characterized by personality changes, chorea, dementia and weight loss. The cause of this weight loss is unknown. The aim of this study was to examine body weight changes and weight-regulating factors in HD using the R6/2 mouse model as a tool. We found that R6/2 mice started losing weight at 9 weeks of age. Total locomotor activity was unaltered and caloric intake was not decreased until 11 weeks of age, which led us to hypothesize that increased metabolism might underlie the weight loss. Indeed, oxygen consumption in R6/2 mice was elevated from 6 weeks of age, indicative of an increased metabolism. Several organ systems that regulate weight and metabolism, including the hypothalamus, the stomach and adipose tissue displayed abnormalities in R6/2 mice. Together, these data demonstrate that weight loss in R6/2 mice is associated with increased metabolism and changes in several weight-regulating factors.


Assuntos
Modelos Animais de Doenças , Doença de Huntington/metabolismo , Fatores Etários , Análise de Variância , Animais , Comportamento Animal , Temperatura Corporal , Peso Corporal/genética , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Consumo de Oxigênio , Teste de Desempenho do Rota-Rod/métodos , Expansão das Repetições de Trinucleotídeos/genética
19.
J Exp Med ; 205(8): 1869-77, 2008 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-18625748

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by both neurological and systemic abnormalities. We examined the peripheral immune system and found widespread evidence of innate immune activation detectable in plasma throughout the course of HD. Interleukin 6 levels were increased in HD gene carriers with a mean of 16 years before the predicted onset of clinical symptoms. To our knowledge, this is the earliest plasma abnormality identified in HD. Monocytes from HD subjects expressed mutant huntingtin and were pathologically hyperactive in response to stimulation, suggesting that the mutant protein triggers a cell-autonomous immune activation. A similar pattern was seen in macrophages and microglia from HD mouse models, and the cerebrospinal fluid and striatum of HD patients exhibited abnormal immune activation, suggesting that immune dysfunction plays a role in brain pathology. Collectively, our data suggest parallel central nervous system and peripheral pathogenic pathways of immune activation in HD.


Assuntos
Doença de Huntington/imunologia , Animais , Estudos de Casos e Controles , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Citocinas/sangue , Citocinas/líquido cefalorraquidiano , Expressão Gênica , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/imunologia , Microglia/metabolismo , Modelos Imunológicos , Monócitos/imunologia , Monócitos/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Expansão das Repetições de Trinucleotídeos
20.
Hum Mol Genet ; 16(9): 1078-90, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17360721

RESUMO

Huntington's disease (HD) is caused by an expanded polyglutamine tract in the huntingtin protein. Mitochondrial dysfunction and free radical damage occur in both R6/2 mice and HD patient brains and might play a role in disease pathogenesis. In cell culture systems, heat-shock protein 27 (Hsp27), a small molecular chaperone, suppresses mutant huntingtin-induced reactive oxygen species formation and cell death. To investigate this in vivo, we conducted an extensive phenotypic characterization of mice arising from a cross between R6/2 mice and Hsp27 transgenic mice but did not observe an improvement of the R6/2 phenotype. Hsp27 overexpression had no effect in reducing oxidative stress in the R6/2 brain, assessed by measuring striatal aconitase activity and protein carbonylation levels. Native protein gel analysis revealed that transgenic Hsp27 forms active, large oligomeric species in heat-shocked brain lysates, demonstrating that it is efficiently activated upon stress. In contrast, Hsp27 in double transgenic brains exists predominantly as a low molecular weight, inactive species. This suggests that Hsp27, which is otherwise activatable upon heat shock, remains inactive in the R6/2 model of chronic neurodegeneration. Hsp27 transgenics had been previously shown to be protected from acute stresses such as kainate administration, ischemia/reperfusion heart injury and neonatal nerve injury. Our study is the first to suggest a differential modulation of Hsp27 activation in vivo and, importantly, it illustrates the diverse effect of Hsp27 on acute versus chronic models of disease.


Assuntos
Proteínas de Choque Térmico/genética , Doença de Huntington/genética , Degeneração Neural/genética , Aconitato Hidratase/metabolismo , Animais , Comportamento Animal , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Genótipo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Imuno-Histoquímica , Imunoprecipitação , Corpos de Inclusão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Estresse Oxidativo , Fenótipo , Transglutaminases/genética , Transglutaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA