RESUMO
In wheat, the transition of the inflorescence meristem to a terminal spikelet (IMâTS) determines the spikelet number per spike (SNS), an important yield component. In this study, we demonstrate that the plant-specific transcription factor LEAFY (LFY) physically and genetically interacts with WHEAT ORTHOLOG OF APO1 (WAPO1) to regulate SNS and floret development. Loss-of-function mutations in either or both genes result in significant and similar reductions in SNS, as a result of a reduction in the rate of spikelet meristem formation per day. SNS is also modulated by significant genetic interactions between LFY and the SQUAMOSA MADS-box genes VRN1 and FUL2, which promote the IMâTS transition. Single-molecule fluorescence in situ hybridization revealed a downregulation of LFY and upregulation of the SQUAMOSA MADS-box genes in the distal part of the developing spike during the IMâTS transition, supporting their opposite roles in the regulation of SNS in wheat. Concurrently, the overlap of LFY and WAPO1 transcription domains in the developing spikelets contributes to normal floret development. Understanding the genetic network regulating SNS is a necessary first step to engineer this important agronomic trait.
Assuntos
Regulação da Expressão Gênica de Plantas , Meristema , Proteínas de Plantas , Fatores de Transcrição , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Meristema/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Mutação/genética , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismoRESUMO
Flowering is a key developmental transition in the plant life cycle. In temperate climates, flowering often occurs in response to the perception of seasonal cues such as changes in day-length and temperature. However, the mechanisms that have evolved to control the timing of flowering in temperate grasses are not fully understood. We identified a Brachypodium distachyon mutant whose flowering is delayed under inductive long-day conditions due to a mutation in the JMJ1 gene, which encodes a Jumonji domain-containing protein. JMJ1 is a histone demethylase that mainly demethylates H3K4me2 and H3K4me3 in vitro and in vivo. Analysis of the genome-wide distribution of H3K4me1, H3K4me2, and H3K4me3 in wild-type plants by chromatin immunoprecipitation and sequencing combined with RNA sequencing revealed that H3K4m1 and H3K4me3 are positively associated with gene transcript levels, whereas H3K4me2 is negatively correlated with transcript levels. Furthermore, JMJ1 directly binds to the chromatin of the flowering regulator genes VRN1 and ID1 and affects their transcription by modifying their H3K4me2 and H3K4me3 levels. Genetic analyses indicated that JMJ1 promotes flowering by activating VRN1 expression. Our study reveals a role for JMJ1-mediated chromatin modification in the proper timing of flowering in B. distachyon.
Assuntos
Brachypodium , Flores , Regulação da Expressão Gênica de Plantas , Histonas , Proteínas de Plantas , Brachypodium/genética , Brachypodium/fisiologia , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Histonas/metabolismo , Mutação/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Cromatina/metabolismo , Cromatina/genéticaRESUMO
The transition to flowering is a major developmental switch in plants. In many temperate grasses, perception of indicators of seasonal change, such as changing day-length and temperature, leads to expression of FLOWERING LOCUS T1 (FT1) and FT-Like (FTL) genes that are essential for promoting the transition to flowering. However, little is known about the upstream regulators of FT1 and FTL genes in temperate grasses. Here, we characterize the monocot-specific gene INDETERMINATE1 (BdID1) in Brachypodium distachyon and demonstrate that BdID1 is a regulator of FT family genes. Mutations in ID1 impact the ability of the short-day (SD) vernalization, cold vernalization, and long-day (LD) photoperiod pathways to induce certain FTL genes. BdID1 is required for upregulation of FTL9 (FT-LIKE9) expression by the SD vernalization pathway, and overexpression of FTL9 in an id1 background can partially restore the delayed flowering phenotype of id1. We show that BdID1 binds in vitro to the promoter region of FTL genes suggesting that ID1 directly activates FTL expression. Transcriptome analysis shows that BdID1 is required for FT1, FT2, FTL12, and FTL13 expression under inductive LD photoperiods, indicating that BdID1 is a regulator of the FT gene family. Moreover, overexpression of FT1 in the id1 background results in rapid flowering similar to overexpressing FT1 in the wild type, demonstrating that BdID1 is upstream of FT family genes. Interestingly, ID1 negatively regulates a previously uncharacterized FTL gene, FTL4, and we show that FTL4 is a repressor of flowering. Thus, BdID1 is critical for proper timing of flowering in temperate grasses.
Assuntos
Brachypodium , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brachypodium/genética , Genes de Plantas , Flores/metabolismo , Fotoperíodo , Regulação da Expressão Gênica de PlantasRESUMO
The photoperiodic response is critical for plants to adjust their reproductive phase to the most favorable season. Wheat heads earlier under long days (LD) than under short days (SD) and this difference is mainly regulated by the PHOTOPERIOD1 (PPD1) gene. Tetraploid wheat plants carrying the Ppd-A1a allele with a large deletion in the promoter head earlier under SD than plants carrying the wildtype Ppd-A1b allele with an intact promoter. Phytochromes PHYB and PHYC are necessary for the light activation of PPD1, and mutations in either of these genes result in the downregulation of PPD1 and very late heading time. We show here that both effects are reverted when the phyB mutant is combined with loss-of-function mutations in EARLY FLOWERING 3 (ELF3), a component of the Evening Complex (EC) in the circadian clock. We also show that the wheat ELF3 protein interacts with PHYB and PHYC, is rapidly modified by light, and binds to the PPD1 promoter in planta (likely as part of the EC). Deletion of the ELF3 binding region in the Ppd-A1a promoter results in PPD1 upregulation at dawn, similar to PPD1 alleles with intact promoters in the elf3 mutant background. The upregulation of PPD1 is correlated with the upregulation of the florigen gene FLOWERING LOCUS T1 (FT1) and early heading time. Loss-of-function mutations in PPD1 result in the downregulation of FT1 and delayed heading, even when combined with the elf3 mutation. Taken together, these results indicate that ELF3 operates downstream of PHYB as a direct transcriptional repressor of PPD1, and that this repression is relaxed both by light and by the deletion of the ELF3 binding region in the Ppd-A1a promoter. In summary, the regulation of the light mediated activation of PPD1 by ELF3 is critical for the photoperiodic regulation of wheat heading time.
Assuntos
Fitocromo B , Triticum , Fitocromo B/genética , Fitocromo B/metabolismo , Triticum/genética , Flores/genética , Flores/metabolismo , Ritmo Circadiano/genética , Fotoperíodo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon.
Assuntos
Brachypodium , Fitocromo , Proteínas de Plantas , Fatores de Transcrição , Brachypodium/genética , Brachypodium/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Fotoperíodo , Fatores de Transcrição/metabolismo , Epistasia Genética , Mutação , Perfilação da Expressão Gênica , Flores/metabolismoRESUMO
Plants respond to increased CO2 concentrations through stomatal closure, which can contribute to increased water use efficiency. Grasses display faster stomatal responses than eudicots due to dumbbell-shaped guard cells flanked by subsidiary cells working in opposition. However, forward genetic screening for stomatal CO2 signal transduction mutants in grasses has yet to be reported. The grass model Brachypodium distachyon is closely related to agronomically important cereal crops, sharing largely collinear genomes. To gain insights into CO2 control mechanisms of stomatal movements in grasses, we developed an unbiased forward genetic screen with an EMS-mutagenized B. distachyon M5 generation population using infrared imaging to identify plants with altered leaf temperatures at elevated CO2. Among isolated mutants, a "chill1" mutant exhibited cooler leaf temperatures than wild-type Bd21-3 parent control plants after exposure to increased CO2. chill1 plants showed strongly impaired high CO2-induced stomatal closure despite retaining a robust abscisic acid-induced stomatal closing response. Through bulked segregant whole-genome sequencing analyses followed by analyses of further backcrossed F4 generation plants and generation and characterization of sodium azide and CRISPR-cas9 mutants, chill1 was mapped to a protein kinase, Mitogen-Activated Protein Kinase 5 (BdMPK5). The chill1 mutation impaired BdMPK5 protein-mediated CO2/HCO3- sensing together with the High Temperature 1 (HT1) Raf-like kinase in vitro. Furthermore, AlphaFold2-directed structural modeling predicted that the identified BdMPK5-D90N chill1 mutant residue is located at the interface of BdMPK5 with the BdHT1 Raf-like kinase. BdMPK5 is a key signaling component that mediates CO2-induced stomatal movements and is proposed to function as a component of the primary CO2 sensor in grasses.
Assuntos
Brachypodium , Dióxido de Carbono , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Brachypodium/genética , Brachypodium/fisiologia , Dióxido de Carbono/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologiaRESUMO
Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In the temperate cereals, wheat and barley, the photoperiod and vernalization pathways explain most of the natural variation in flowering time. However, other pathways also participate in fine-tuning the flowering response. In this work, we integrate the conserved microRNA miR172 and its targets APETALA2-like (AP2L) genes into the temperate grass flowering network involving VERNALIZATION 1 (VRN1), VRN2 and FLOWERING LOCUS T 1 (FT1 = VRN3) genes. Using mutants, transgenics and different growing conditions, we show that miR172 promotes flowering in wheat, while its target genes AP2L1 (TaTOE1) and AP2L5 (Q) act as flowering repressors. Moreover, we reveal that the miR172-AP2L pathway regulates FT1 expression in the leaves, and that this regulation is independent of VRN2 and VRN1. In addition, we show that the miR172-AP2L module and flowering are both controlled by plant age through miR156 in spring cultivars. However, in winter cultivars, flowering and the regulation of AP2L1 expression are decoupled from miR156 downregulation with age, and induction of VRN1 by vernalization is required to repress AP2L1 in the leaves and promote flowering. Interestingly, the levels of miR172 and both AP2L genes modulate the flowering response to different vernalization treatments in winter cultivars. In summary, our results show that conserved and grass specific gene networks interact to modulate the flowering response, and that natural or induced mutations in AP2L genes are useful tools for fine-tuning wheat flowering time in a changing environment.
Assuntos
Genes de Plantas , Triticum , Flores/genética , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Poaceae/genética , Triticum/genéticaRESUMO
Improving our understanding of the genes regulating grain yield can contribute to the development of more productive wheat varieties. Previously, a highly significant QTL affecting spikelet number per spike (SNS), grain number per spike (GNS) and grain yield was detected on chromosome arm 7AL in multiple genome-wide association studies. Using a high-resolution genetic map, we established that the A-genome homeolog of WHEAT ORTHOLOG OF APO1 (WAPO-A1) was a leading candidate gene for this QTL. Using mutants and transgenic plants, we demonstrate in this study that WAPO-A1 is the causal gene underpinning this QTL. Loss-of-function mutants wapo-A1 and wapo-B1 showed reduced SNS in tetraploid wheat, and the effect was exacerbated in wapo1 combining both mutations. By contrast, spikes of transgenic wheat plants carrying extra copies of WAPO-A1 driven by its native promoter had higher SNS, a more compact spike apical region and a smaller terminal spikelet than the wild type. Taken together, these results indicate that WAPO1 affects SNS by regulating the timing of terminal spikelet formation. Both transgenic and wapo1 mutant plants showed a wide range of floral abnormalities, indicating additional roles of WAPO1 on wheat floral development. Previously, we found three widespread haplotypes in the QTL region (H1, H2 and H3), each associated with particular WAPO-A1 alleles. Results from this and our previous study show that the WAPO-A1 allele in the H1 haplotype (115-bp deletion in the promoter) is expressed at significantly lower levels in the developing spikes than the alleles in the H2 and H3 haplotypes, resulting in reduced SNS. Field experiments also showed that the H2 haplotype is associated with the strongest effects in increasing SNS and GNS (H2>H3>H1). The H2 haplotype is already present in most modern common wheat varieties but is rare in durum wheat, where it might be particularly useful to improve grain yield.
Assuntos
Mapeamento Cromossômico/métodos , Proteínas de Plantas/genética , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Ligação Genética , Haplótipos , Mutação com Perda de Função , Deleção de Sequência , Triticum/genéticaRESUMO
KEY MESSAGE: The wheat transcription factor bZIPC1 interacts with FT2 and affects spikelet and grain number per spike. We identified a natural allele with positive effects on these two economically important traits. Loss-of-function mutations and natural variation in the gene FLOWERING LOCUS T2 (FT2) in wheat have previously been shown to affect spikelet number per spike (SNS). However, while other FT-like wheat proteins interact with bZIP-containing transcription factors from the A-group, FT2 does not interact with any of them. In this study, we used a yeast-two-hybrid screen with FT2 as bait and identified a grass-specific bZIP-containing transcription factor from the C-group, designated here as bZIPC1. Within the C-group, we identified four clades including wheat proteins that show Y2H interactions with different sets of FT-like and CEN-like encoded proteins. bZIPC1 and FT2 expression partially overlap in the developing spike, including the inflorescence meristem. Combined loss-of-function mutations in bZIPC-A1 and bZIPC-B1 (bzipc1) in tetraploid wheat resulted in a drastic reduction in SNS with a limited effect on heading date. Analysis of natural variation in the bZIPC-B1 (TraesCS5B02G444100) region revealed three major haplotypes (H1-H3), with the H1 haplotype showing significantly higher SNS, grain number per spike and grain weight per spike than both the H2 and H3 haplotypes. The favorable effect of the H1 haplotype was also supported by its increased frequency from the ancestral cultivated tetraploids to the modern tetraploid and hexaploid wheat varieties. We developed markers for the two non-synonymous SNPs that differentiate the bZIPC-B1b allele in the H1 haplotype from the ancestral bZIPC-B1a allele present in all other haplotypes. These diagnostic markers are useful tools to accelerate the deployment of the favorable bZIPC-B1b allele in pasta and bread wheat breeding programs.
Assuntos
Tetraploidia , Triticum , Triticum/genética , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Fatores de Transcrição/genéticaRESUMO
In Arabidopsis, CONSTANS (CO) integrates light and circadian clock signals to promote flowering under long days (LD). In the grasses, a duplication generated two paralogs designated as CONSTANS1 (CO1) and CONSTANS2 (CO2). Here we show that in tetraploid wheat plants grown under LD, combined loss-of-function mutations in the A and B-genome homeologs of CO1 and CO2 (co1 co2) result in a small (3 d) but significant (P<0.0001) acceleration of heading time both in PHOTOPERIOD1 (PPD1) sensitive (Ppd-A1b, functional ancestral allele) and insensitive (Ppd-A1a, functional dominant allele) backgrounds. Under short days (SD), co1 co2 mutants headed 13 d earlier than the wild type (P<0.0001) in the presence of Ppd-A1a. However, in the presence of Ppd-A1b, spikes from both genotypes failed to emerge by 180 d. These results indicate that CO1 and CO2 operate mainly as weak heading time repressors in both LD and SD. By contrast, in ppd1 mutants with loss-of-function mutations in both PPD1 homeologs, the wild type Co1 allele accelerated heading time >60 d relative to the co1 mutant allele under LD. We detected significant genetic interactions among CO1, CO2 and PPD1 genes on heading time, which were reflected in complex interactions at the transcriptional and protein levels. Loss-of-function mutations in PPD1 delayed heading more than combined co1 co2 mutations and, more importantly, PPD1 was able to perceive and respond to differences in photoperiod in the absence of functional CO1 and CO2 genes. Similarly, CO1 was able to accelerate heading time in response to LD in the absence of a functional PPD1. Taken together, these results indicate that PPD1 and CO1 are able to respond to photoperiod in the absence of each other, and that interactions between these two photoperiod pathways at the transcriptional and protein levels are important to fine-tune the flowering response in wheat.
Assuntos
Epistasia Genética/genética , Fotoperíodo , Proteínas de Plantas/genética , Triticum/genética , Alelos , Arabidopsis , Relógios Circadianos/genética , Ritmo Circadiano/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Fatores de Transcrição/genética , Triticum/crescimento & desenvolvimentoRESUMO
The timing of reproduction is a critical developmental decision in the life cycle of many plant species. Fine mapping of a rapid-flowering mutant was done using whole-genome sequence data from bulked DNA from a segregating F2 mapping populations. The causative mutation maps to a gene orthologous with the third subunit of DNA polymerase δ (POLD3), a previously uncharacterized gene in plants. Expression analyses of POLD3 were conducted via real time qPCR to determine when and in what tissues the gene is expressed. To better understand the molecular basis of the rapid-flowering phenotype, transcriptomic analyses were conducted in the mutant vs wild-type. Consistent with the rapid-flowering mutant phenotype, a range of genes involved in floral induction and flower development are upregulated in the mutant. Our results provide the first characterization of the developmental and gene expression phenotypes that result from a lesion in POLD3 in plants.
Assuntos
Brachypodium , Brachypodium/genética , Brachypodium/metabolismo , DNA Polimerase III , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ReproduçãoRESUMO
A requirement for vernalization, the process by which prolonged cold exposure provides competence to flower, is an important adaptation to temperate climates that ensures flowering does not occur before the onset of winter. In temperate grasses, vernalization results in the up-regulation of VERNALIZATION1 (VRN1) to establish competence to flower; however, little is known about the mechanism underlying repression of VRN1 in the fall season, which is necessary to establish a vernalization requirement. Here, we report that a plant-specific gene containing a bromo-adjacent homology and transcriptional elongation factor S-II domain, which we named REPRESSOR OF VERNALIZATION1 (RVR1), represses VRN1 before vernalization in Brachypodium distachyon That RVR1 is upstream of VRN1 is supported by the observations that VRN1 is precociously elevated in an rvr1 mutant, resulting in rapid flowering without cold exposure, and the rapid-flowering rvr1 phenotype is dependent on VRN1 The precocious VRN1 expression in rvr1 is associated with reduced levels of the repressive chromatin modification H3K27me3 at VRN1, which is similar to the reduced VRN1 H3K27me3 in vernalized plants. Furthermore, the transcriptome of vernalized wild-type plants overlaps with that of nonvernalized rvr1 plants, indicating loss of rvr1 is similar to the vernalized state at a molecular level. However, loss of rvr1 results in more differentially expressed genes than does vernalization, indicating that RVR1 may be involved in processes other than vernalization despite a lack of any obvious pleiotropy in the rvr1 mutant. This study provides an example of a role for this class of plant-specific genes.
Assuntos
Proteínas de Arabidopsis/genética , Brachypodium/genética , Proteínas Repressoras/genética , Cromatina/genética , Temperatura Baixa , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Mutação/genética , Ativação Transcricional/genética , Transcriptoma/genética , Regulação para Cima/genéticaRESUMO
Many plants require prolonged exposure to cold to acquire the competence to flower. The process by which cold exposure results in competence is known as vernalization. In Arabidopsis thaliana, vernalization leads to the stable repression of the floral repressor FLOWERING LOCUS C via chromatin modification, including an increase of trimethylation on lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2). Vernalization in pooids is associated with the stable induction of a floral promoter, VERNALIZATION 1 (VRN1). From a screen for mutants with a reduced vernalization requirement in the model grass Brachypodium distachyon, we identified two recessive alleles of ENHANCER OF ZESTE-LIKE 1 (EZL1). EZL1 is orthologous to A. thaliana CURLY LEAF 1, a gene that encodes the catalytic subunit of PRC2. B. distachyon ezl1 mutants flower rapidly without vernalization in long-day (LD) photoperiods; thus, EZL1 is required for the proper maintenance of the vegetative state prior to vernalization. Transcriptomic studies in ezl1 revealed mis-regulation of thousands of genes, including ectopic expression of several floral homeotic genes in leaves. Loss of EZL1 results in the global reduction of H3K27me3 and H3K27me2, consistent with this gene making a major contribution to PRC2 activity in B. distachyon. Furthermore, in ezl1 mutants, the flowering genes VRN1 and AGAMOUS (AG) are ectopically expressed and have reduced H3K27me3. Artificial microRNA knock-down of either VRN1 or AG in ezl1-1 mutants partially restores wild-type flowering behavior in non-vernalized plants, suggesting that ectopic expression in ezl1 mutants may contribute to the rapid-flowering phenotype.
Assuntos
Brachypodium/fisiologia , Flores/fisiologia , Mutação , Proteínas de Plantas/metabolismo , Brachypodium/genética , Imunoprecipitação da Cromatina , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente ModificadasRESUMO
The transition to reproductive development is a crucial step in the plant life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a nondomesticated pooid grass closely related to cereals such as wheat (Triticum spp.) and barley (Hordeum vulgare L.). A recombinant inbred line population derived from a cross between the rapid-flowering accession Bd21 and the delayed-flowering accession Bd1-1 were grown in a variety of environmental conditions to enable exploration of the genetic architecture of flowering time. A genotyping-by-sequencing approach was used to develop SNP markers for genetic map construction, and quantitative trait loci (QTLs) that control differences in flowering time were identified. Many of the flowering-time QTLs are detected across a range of photoperiod and vernalization conditions, suggesting that the genetic control of flowering within this population is robust. The two major QTLs identified in undomesticated B. distachyon colocalize with VERNALIZATION1/PHYTOCHROME C and VERNALIZATION2, loci identified as flowering regulators in the domesticated crops wheat and barley. This suggests that variation in flowering time is controlled in part by a set of genes broadly conserved within pooid grasses.
Assuntos
Brachypodium/genética , Flores/genética , Flores/fisiologia , Variação Genética , Sequência de Bases , Mapeamento Cromossômico , Cruzamentos Genéticos , Ecótipo , Meio Ambiente , Genes de Plantas , Genótipo , Endogamia , Mutação/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Fatores de TempoRESUMO
Flowering of many plant species is coordinated with seasonal environmental cues such as temperature and photoperiod. Vernalization provides competence to flower after prolonged cold exposure, and a vernalization requirement prevents flowering from occurring prior to winter. In winter wheat (Triticum aestivum) and barley (Hordeum vulgare), three genes VRN1, VRN2, and FT form a regulatory loop that regulates the initiation of flowering. Prior to cold exposure, VRN2 represses FT. During cold, VRN1 expression increases, resulting in the repression of VRN2, which in turn allows activation of FT during long days to induce flowering. Here, we test whether the circuitry of this regulatory loop is conserved across Pooideae, consistent with their niche transition from the tropics to the temperate zone. Our phylogenetic analyses of VRN2-like genes reveal a duplication event occurred before the diversification of the grasses that gave rise to a CO9 and VRN2/Ghd7 clade and support orthology between wheat/barley VRN2 and rice (Oryza sativa) Ghd7 Our Brachypodium distachyon VRN1 and VRN2 knockdown and overexpression experiments demonstrate functional conservation of grass VRN1 and VRN2 in the promotion and repression of flowering, respectively. However, expression analyses in a range of pooids demonstrate that the cold repression of VRN2 is unique to core Pooideae such as wheat and barley. Furthermore, VRN1 knockdown in B. distachyon demonstrates that the VRN1-mediated suppression of VRN2 is not conserved. Thus, the VRN1-VRN2 feature of the regulatory loop appears to have evolved late in the diversification of temperate grasses.
Assuntos
Brachypodium/genética , Brachypodium/fisiologia , Evolução Molecular , Flores/genética , Flores/fisiologia , Genes de Plantas , Teorema de Bayes , Temperatura Baixa , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Timing of flowering is key to the reproductive success of many plants. In temperate climates, flowering is often coordinated with seasonal environmental cues such as temperature and photoperiod. Vernalization is an example of temperature influencing the timing of flowering and is defined as the process by which a prolonged exposure to the cold of winter results in competence to flower during the following spring. In cereals, three genes (VERNALIZATION1 [VRN1], VRN2, and FLOWERING LOCUS T [FT]) have been identified that influence the vernalization requirement and are thought to form a regulatory loop to control the timing of flowering. Here, we characterize natural variation in the vernalization and photoperiod responses in Brachypodium distachyon, a small temperate grass related to wheat (Triticum aestivum) and barley (Hordeum vulgare). Brachypodium spp. accessions display a wide range of flowering responses to different photoperiods and lengths of vernalization. In addition, we characterize the expression patterns of the closest homologs of VRN1, VRN2 (VRN2-like [BdVRN2L]), and FT before, during, and after cold exposure as well as in different photoperiods. FT messenger RNA levels generally correlate with flowering time among accessions grown in different photoperiods, and FT is more highly expressed in vernalized plants after cold. VRN1 is induced by cold in leaves and remains high following vernalization. Plants overexpressing VRN1 or FT flower rapidly in the absence of vernalization, and plants overexpressing VRN1 exhibit lower BdVRN2L levels. Interestingly, BdVRN2L is induced during cold, which is a difference in the behavior of BdVRN2L compared with wheat VRN2 during cold.
Assuntos
Brachypodium/fisiologia , Temperatura Baixa , Flores/fisiologia , Fotoperíodo , Brachypodium/genética , Ecótipo , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo , Regulação para Cima/genéticaRESUMO
BACKGROUND: Ulnar collateral ligament (UCL) injuries have been successfully treated by the docking reconstruction. Although fixation of the graft has been suggested at 30° of elbow flexion, no quantitative biomechanical data exist to provide guidelines for the optimal elbow flexion angle for graft fixation. METHODS: Testing was conducted on 10 matched pairs of cadaver elbows with use of a loading system and optoelectric tracking device. After biomechanical data on the native UCL were obtained, reconstruction by the docking technique was performed with use of palmaris longus autograft with one elbow fixated at 30° and the contralateral elbow at 90° of elbow flexion. Biomechanical testing was undertaken on these specimens. RESULTS: The load to failure of the native UCL (mean, 20.1 N-m) was significantly higher (P = .004) than that of the reconstructed UCL (mean, 4.6 N-m). There was no statistically significant difference in load to failure of the UCL reconstructions fixated at 30° of elbow flexion (average, 4.86 N-m) compared with those at 90° (average, 4.35 N-m). Elbows reconstructed at 30° and 90° of elbow flexion produced similar kinematic coupling and valgus laxity characteristics compared with each other and with the intact UCL. Although not statistically significant, the reconstructions fixated at 30° more closely resembled the biomechanical characteristics of the intact elbow than did reconstructions fixated at 90°. CONCLUSION: No statistically significant difference was found in comparing the docking technique of UCL reconstruction with graft fixation at 30° vs. 90° of elbow flexion.
Assuntos
Ligamentos Colaterais/cirurgia , Articulação do Cotovelo/cirurgia , Procedimentos Ortopédicos/métodos , Fenômenos Biomecânicos , Cadáver , Humanos , Ligamentos/transplante , Estresse MecânicoRESUMO
Synchronizing the timing of reproduction with the environment is crucial in the wild. Among the multiple mechanisms, annual plants evolved to sense their environment, the requirement of cold-mediated vernalization is a major process that prevents individuals from flowering during winter. In many annual plants including crops, both a long and short vernalization requirement can be observed within species, resulting in so-called early-(spring) and late-(winter) flowering genotypes. Here, using the grass model Brachypodium distachyon, we explored the link between flowering-time-related traits (vernalization requirement and flowering time), environmental variation, and diversity at flowering-time genes by combining measurements under greenhouse and outdoor conditions. These experiments confirmed that B. distachyon natural accessions display large differences regarding vernalization requirements and ultimately flowering time. We underline significant, albeit quantitative effects of current environmental conditions on flowering-time-related traits. While disentangling the confounding effects of population structure on flowering-time-related traits remains challenging, population genomics analyses indicate that well-characterized flowering-time genes may contribute significantly to flowering-time variation and display signs of polygenic selection. Flowering-time genes, however, do not colocalize with genome-wide association peaks obtained with outdoor measurements, suggesting that additional genetic factors contribute to flowering-time variation in the wild. Altogether, our study fosters our understanding of the polygenic architecture of flowering time in a natural grass system and opens new avenues of research to investigate the gene-by-environment interaction at play for this trait.
Assuntos
Brachypodium , Flores , Herança Multifatorial , Brachypodium/genética , Brachypodium/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Interação Gene-Ambiente , Meio Ambiente , Fenótipo , Locos de Características QuantitativasAssuntos
Flores/fisiologia , Variação Genética , Magnoliopsida/fisiologia , Fotoperíodo , Adaptação Fisiológica , Alelos , Evolução Biológica , Temperatura Baixa , Meio Ambiente , Flores/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Magnoliopsida/genética , Fenótipo , Filogenia , Reprodução , Estações do Ano , Fatores de TempoRESUMO
The diversity of plant architectural form is largely determined by the extent and duration of axillary meristem (AM) derived lateral growth. The orthologous basic helix-loop-helix (bHLH) proteins maize BARREN STALK1 (BA1) and rice LAX PANICLE1 (LAX1) are essential for the formation of AMs during vegetative development and all lateral structures during inflorescence development, but whether BA1/LAX1 co-orthologs exist outside of the grass family is unclear. Here, we present Bayesian phylogenetic evidence of a well-supported BA1/LAX1 clade comprised monocots and eudicots, estimating an origin for the lineage at least near the base of flowering plants. Genomic analyses in Arabidopsis, papaya, medicago, rice, sorghum, and maize indicate that BA1/LAX1 genes reside in syntenic regions, although there has also been a complex pattern of gene duplication and loss during the diversification of the angiosperm clade. BA1/LAX1 mRNA expression coincided with the initiation of leaves and associated AMs in the vegetative meristems of broccoli, medicago, and papaya implicating a role for the lineage in the formation of AMs in eudicots as well as monocots. Expression on the adaxial surface of lateral inflorescence structures was conserved in all sampled flowering plants, whereas mRNA expression in leaves of Arabidopsis, broccoli, and papaya also links BA1/LAX1 co-orthologs with roles in regulating leaf development, possibly as a downstream target of auxin regulating genes. Together these data point to roles for BA1/LAX1 genes during AM formation, leaf, and inflorescence development in diverse flowering plants and lend support to the hypothesis that the same genetic mechanisms regulate the development of different AM types.