RESUMO
Adenosine is a local mediator that regulates changes in the cardiovascular system via activation of four G protein-coupled receptors (A1 , A2A , A2B , A3 ). Here, we have investigated the effect of A2A and A2B -selective agonists on vasodilatation in three distinct vascular beds of the rat cardiovascular system. NanoBRET ligand binding studies were used to confirm receptor selectivity. The regional hemodynamic effects of adenosine A2A and A2B selective agonists were investigated in conscious rats. Male Sprague-Dawley rats (350-450 g) were chronically implanted with pulsed Doppler flow probes on the renal artery, mesenteric artery, and the descending abdominal aorta. Cardiovascular responses were measured following intravenous infusion (3 min for each dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1 µg kg-1 min-1 ) or the A2B -selective agonist BAY 60-6583 (4,13.3, 40 µg kg-1 min-1 ) following predosing with the A2A -selective antagonist SCH 58261 (0.1 or 1 mg kg-1 min-1 ), the A2B /A2A antagonist PSB 1115 (10 mg kg-1 min-1 ) or vehicle. The A2A -selective agonist CGS 21680 produced a striking increase in heart rate (HR) and hindquarters vascular conductance (VC) that was accompanied by a significant decrease in mean arterial pressure (MAP) in conscious rats. In marked contrast, the A2B -selective agonist BAY 60-6583 significantly increased HR and VC in the renal and mesenteric vascular beds, but not in the hindquarters. Taken together, these data indicate that A2A and A2B receptors are regionally selective in their regulation of vascular tone. These results suggest that the development of A2B receptor agonists to induce vasodilatation in the kidney may provide a good therapeutic approach for the treatment of acute kidney injury.
Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Hemodinâmica/efeitos dos fármacos , Receptor A2A de Adenosina/fisiologia , Receptor A2B de Adenosina/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Células HEK293 , Humanos , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Masculino , Fenetilaminas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Triazóis/farmacologia , Vasodilatação/efeitos dos fármacos , Xantinas/farmacologiaRESUMO
The clinical manifestations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection responsible for coronavirus disease 2019 (COVID-19) commonly include dyspnoea and fatigue, and they primarily involve the lungs. However, extra-pulmonary organ dysfunctions, particularly affecting the cardiovascular system, have also been observed following COVID-19 infection. In this context, several cardiac complications have been reported, including hypertension, thromboembolism, arrythmia and heart failure, with myocardial injury and myocarditis being the most frequent. These secondary myocardial inflammatory responses appear to be associated with a poorer disease course and increased mortality in patients with severe COVID-19. In addition, numerous episodes of myocarditis have been reported as a complication of COVID-19 mRNA vaccinations, especially in young adult males. Changes in the cell surface expression of angiotensin-converting enzyme 2 (ACE2) and direct injury to cardiomyocytes resulting from exaggerated immune responses to COVID-19 are just some of the mechanisms that may explain the pathogenesis of COVID-19-induced myocarditis. Here, we review the pathophysiological mechanisms underlying myocarditis associated with COVID-19 infection, with a particular focus on the involvement of ACE2 and Toll-like receptors (TLRs).
Assuntos
COVID-19 , Miocardite , Humanos , COVID-19/complicações , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Miocardite/etiologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Receptores Toll-LikeRESUMO
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardiovascular complications (CVCs) associated with infection. The reported CVCs include myocarditis, heart failure, arrhythmias, thromboembolism and blood pressure abnormalities. These occur, in part, because of dysregulation of the Renin-Angiotensin-Aldosterone System (RAAS) and Kinin-Kallikrein System (KKS). A major route by which SARS-CoV-2 gains cellular entry is via the docking of the viral spike (S) protein to the membrane-bound angiotensin converting enzyme 2 (ACE2). The roles of ACE2 within the cardiovascular and immune systems are vital to ensure homeostasis. The key routes for the development of CVCs and the recently described long COVID have been hypothesised as the direct consequences of the viral S protein/ACE2 axis, downregulation of ACE2 and the resulting damage inflicted by the immune response. Here, we review the impact of COVID-19 on the cardiovascular system, the mechanisms by which dysregulation of the RAAS and KKS can occur following virus infection and the future implications for pharmacological therapies.
Assuntos
COVID-19/complicações , Doenças Cardiovasculares/etiologia , Sistema Calicreína-Cinina , Sistema Renina-Angiotensina , Enzima de Conversão de Angiotensina 2/metabolismo , Bradicinina/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/metabolismo , Humanos , Síndrome de COVID-19 Pós-Aguda , Tratamento Farmacológico da COVID-19RESUMO
VEGF inhibitors, including receptor tyrosine kinase inhibitors, are used as adjunct therapies in a number of cancer treatments. An emerging issue with these drugs is that most cause hypertension. To gain insight into the physiological mechanisms involved, we evaluated their regional hemodynamic effects in conscious rats. Male Sprague Dawley rats (350-450 g) were chronically implanted with pulsed Doppler flow probes (renal and mesenteric arteries, and the descending abdominal aorta) and catheters (jugular vein, peritoneal cavity, and distal abdominal aorta). Regional hemodynamics were measured over 4 d, before and after daily administration of cediranib (3 and 6 mg/kg, 3 and 6 mg/kg/h for 1 h, i.v.), sorafenib (10 and 20 mg/kg, 10 and 20 mg kg/h for 1 h, i.v.), pazopanib (30 and100 mg/kg, i.p.), or vandetanib (12.5 and 25 mg/kg, i.p.). All drugs evoked significant increases (P < 0.05; n = 7-8) in mean arterial pressure, which were generally accompanied by significant mesenteric and hindquarters, but not renal, vasoconstrictions. The hypertensive effects of cediranib were unaffected by losartan (10 mg/kg/h), bosentan (20 mg/kg/h), or a combination of phentolamine and propranolol (each 1 mg/kg/h), suggesting a need for new strategies to overcome them.-Carter, J. J., Fretwell, L. V., Woolard, J. Effects of 4 multitargeted receptor tyrosine kinase inhibitors on regional hemodynamics in conscious, freely moving rats.
Assuntos
Hemodinâmica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Fluxo Sanguíneo Regional/efeitos dos fármacos , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Estado de Consciência , Indazóis , Losartan/administração & dosagem , Losartan/farmacologia , Masculino , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/farmacologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Propranolol/administração & dosagem , Propranolol/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Quinazolinas/administração & dosagem , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Sorafenibe , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologiaRESUMO
ß-Blockers reduce mortality and improve symptoms in people with heart disease; however, current clinically available ß-blockers have poor selectivity for the cardiac ß1-adrenoceptor (AR) over the lung ß2-AR. Unwanted ß2-blockade risks causing life-threatening bronchospasm and reduced efficacy of ß2-agonist emergency rescue therapy. Thus, current life-prolonging ß-blockers are contraindicated in patients with both heart disease and asthma. Here, we describe NDD-713 and -825, novel highly ß1-selective neutral antagonists with good pharmaceutical properties that can potentially overcome this limitation. Radioligand binding studies and functional assays that use human receptors expressed in Chinese hamster ovary cells demonstrate that NDD-713 and -825 have nanomolar ß1-AR affinity >500-fold ß1-AR vs ß2-AR selectivity and no agonism. Studies in conscious rats demonstrate that these antagonists are orally bioavailable and cause pronounced ß1-mediated reduction of heart rate while showing no effect on ß2-mediated hindquarters vasodilatation. These compounds also have good disposition properties and show no adverse toxicologic effects. They potentially offer a truly cardioselective ß-blocker therapy for the large number of patients with heart and respiratory or peripheral vascular comorbidities.-Baker, J. G., Gardiner, S. M., Woolard, J., Fromont, C., Jadhav, G. P., Mistry, S. N., Thompson, K. S. J., Kellam, B., Hill, S. J., Fischer, P. M. Novel selective ß1-adrenoceptor antagonists for concomitant cardiovascular and respiratory disease.
Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Benzamidas/farmacologia , Isoindóis/farmacologia , Antagonistas de Receptores Adrenérgicos beta 1/administração & dosagem , Antagonistas de Receptores Adrenérgicos beta 1/farmacocinética , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/química , Humanos , Masculino , Testes de Mutagenicidade , Ratos , Ratos Sprague-Dawley , Salmonella typhimuriumRESUMO
Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGFxxxa or VEGFxxxb isoforms. Alternative splicing events at exons 5â»7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF165a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.
Assuntos
Isoformas de Proteínas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Endoteliais/metabolismo , Humanos , Transdução de Sinais/fisiologiaRESUMO
The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)-based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology.
Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Técnicas Biossensoriais/tendênciasRESUMO
Receptor tyrosine kinase inhibitors (RTKIs) suppress tumour growth by targeting vascular endothelial growth factor receptor 2 (VEGFR-2) which is an important mediator of angiogenesis. Here, we demonstrate that two potent RTKIs, axitinib and lenvatinib, are associated with hypertensive side effects. Doppler flowmetry was used to evaluate regional haemodynamic profiles of axitinib and lenvatinib. Male Sprague Dawley rats (350-500 g) were instrumented with Doppler flow probes (renal and mesenteric arteries and descending abdominal aorta) and catheters (jugular vein and distal abdominal aorta, via the caudal artery). Rats were dosed daily with axitinib (3 or 6 mg.kg-1) or lenvatinib (1 or 3 mg.kg-1) and regional haemodynamics were recorded over a maximum of 4 days. Both RTKIs caused significant (p < 0.05) increases in mean arterial pressure (MAP), which was accompanied by significant (p < 0.05) vasoconstriction in both the mesenteric and hindquarters vascular beds. To gain insight into the involvement of endothelin-1 (ET-1) in RTKI-mediated hypertension, we also monitored heart rate (HR) and MAP in response to axitinib or lenvatinib in animals treated with the ETA receptor selective antagonist sitaxentan (5 mg.kg-1) or the mixed ETA/ETB receptor antagonist bosentan (15 mg.kg-1) over two days. Co-treatment with bosentan or sitaxentan markedly reduced the MAP effects mediated by both RTKIs (p < 0.05). Bosentan, but not sitaxentan, also attenuated ET-1 mediated increases in HR. These data suggest that selective antagonists of ETA receptors may be appropriate to alleviate the hypertensive effects of axitinib and lenvatinib.
Assuntos
Axitinibe , Hipertensão , Compostos de Fenilureia , Inibidores de Proteínas Quinases , Quinolinas , Ratos Sprague-Dawley , Receptor de Endotelina A , Animais , Masculino , Axitinibe/farmacologia , Quinolinas/farmacologia , Quinolinas/administração & dosagem , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/administração & dosagem , Ratos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor de Endotelina A/metabolismo , Imidazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Indazóis/farmacologia , Indazóis/administração & dosagemRESUMO
The study of protein function and dynamics in their native cellular environment is essential for progressing fundamental science. To overcome the requirement of genetic modification of the protein or the limitations of dissociable fluorescent ligands, ligand-directed (LD) chemistry has most recently emerged as a complementary, bioorthogonal approach for labeling native proteins. Here, we describe the rational design, development, and application of the first ligand-directed chemistry approach for labeling the A1AR in living cells. We pharmacologically demonstrate covalent labeling of A1AR expressed in living cells while the orthosteric binding site remains available. The probes were imaged using confocal microscopy and fluorescence correlation spectroscopy to study A1AR localization and dynamics in living cells. Additionally, the probes allowed visualization of the specific localization of A1ARs endogenously expressed in dorsal root ganglion (DRG) neurons. LD probes developed here hold promise for illuminating ligand-binding, receptor signaling, and trafficking of the A1AR in more physiologically relevant environments.
Assuntos
Corantes Fluorescentes , Receptor A1 de Adenosina , Ligantes , Receptor A1 de Adenosina/metabolismo , Receptor A1 de Adenosina/química , Humanos , Corantes Fluorescentes/química , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Células HEK293 , Neurônios/metabolismoRESUMO
The concept of agonist-independent signalling that can be attenuated by inverse agonists is a fundamental element of the cubic ternary complex model of G protein-coupled receptor (GPCR) activation. This model shows how a GPCR can exist in two conformational states in the absence of ligands; an inactive R state and an active R* state that differ in their affinities for agonists, inverse agonists, and G-protein alpha subunits. The proportion of R* receptors that exist in the absence of agonists determines the level of constitutive receptor activity. In this study we demonstrate that mechanical stimulation can induce ß2-adrenoceptor agonist-independent Gs-mediated cAMP signalling that is sensitive to inhibition by inverse agonists such as ICI-118551 and propranolol. The size of the mechano-sensitive response is dependent on the cell surface receptor expression level in HEK293G cells, is still observed in a ligand-binding deficient D113A mutant ß2-adrenoceptor and can be attenuated by site-directed mutagenesis of the extracellular N-glycosylation sites on the N-terminus and second extracellular loop of the ß2-adrenoceptor. Similar mechano-sensitive agonist-independent responses are observed in HEK293G cells overexpressing the A2A-adenosine receptor. These data provide new insights into how agonist-independent constitutive receptor activity can be enhanced by mechanical stimulation and regulated by inverse agonists.
Assuntos
Agonistas Adrenérgicos beta , Agonismo Inverso de Drogas , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Transdução de Sinais , Ligantes , Receptores AdrenérgicosRESUMO
Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis, proliferation and migration of vascular endothelial cells. It is well known that cardiovascular safety liability for a wide range of small molecule tyrosine kinase inhibitors (TKIs) can result from interference with the VEGFR2 signalling system. In this study we have developed a ligand-binding assay using a fluorescent analogue of sunitinib (sunitinib-red) and full length VEGFR2 tagged on its C-terminus with the bioluminescent protein nanoluciferase to monitor ligand-binding to VEGFR2 using bioluminescence resonance energy transfer (BRET). This NanoBRET assay is a proximity-based assay (requiring the fluorescent and bioluminescent components to be within 10 nm of each other) that can monitor the binding of ligands to the kinase domain of VEGFR2. Sunitinib-red was not membrane permeable but was able to monitor the binding affinity and kinetics of a range of TKIs in cell lysates. Kinetic studies showed that sunitinib-red bound rapidly to VEGFR2 at 25 °C and that cediranib had slower binding kinetics with an average residence time of 111 min. Comparison between the log Ki values for inhibition of binding of sunitinib-red and log IC50 values for attenuation of VEGF165a-stimulated NFAT responses showed very similar values for compounds that inhibited sunitinib-red binding. However, two compounds that failed to inhibit sunitinib-red binding (dasatinib and entospletinib) were still able to attenuate VEGFR2-mediated NFAT signalling through inhibition of downstream signalling events. These results suggest that these compounds may still exhibit cardiovascular liabilities as a result of interference with downstream VEGFR2 signalling.
Assuntos
Fator A de Crescimento do Endotélio Vascular , Sunitinibe , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Ligantes , Cinética , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
E-selectin is expressed on endothelial cells in response to inflammatory cytokines and mediates leukocyte rolling and extravasation. However, studies have been hampered by lack of experimental approaches to monitor expression in real time in living cells. Here, NanoLuc Binary Technology (NanoBiT) in conjunction with CRISPR-Cas9 genome editing was used to tag endogenous E-selectin in human umbilical vein endothelial cells (HUVECs) with the 11 amino acid nanoluciferase fragment HiBiT. Addition of the membrane-impermeable complementary fragment LgBiT allowed detection of cell surface expression. This allowed the effect of inflammatory mediators on E-selectin expression to be monitored in real time in living endothelial cells. NanoBiT combined with CRISPR-Cas9 gene editing allows sensitive monitoring of real-time changes in cell surface expression of E-selectin and offers a powerful tool for future drug discovery efforts aimed at this important inflammatory protein.
RESUMO
A2A and A2B adenosine receptors produce regionally selective regulation of vascular tone and elicit differing effects on mean arterial pressure (MAP), whilst inducing tachycardia. The tachycardia induced by the stimulation of A2A or A2B receptors has been suggested to be mediated by a reflex increase in sympathetic activity. Here, we have investigated the role of ß1 - and ß2 -adrenoceptors in mediating the different cardiovascular responses to selective A2A and A2B receptor stimulation. Hemodynamic variables were measured in conscious male Sprague-Dawley rats (350-450 g) via pulsed Doppler flowmetry. The effect of intravenous infusion (3 min per dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1.0 µg.kg-1 .min-1 ) or the A2B -selective agonist BAY 60-6583 (4.0, 13.3, 40.0 µg.kg-1 .min-1 ) in the absence or following pre-treatment with the non-selective ß-antagonist propranolol (1.0 mg.kg-1 ), the selective ß1 -antagonist CGP 20712A (200 µg.kg-1 ), or the selective ß2 -antagonist ICI 118,551 (2.0 mg.kg-1 ) was investigated (maintenance doses also administered). CGP 20712A and propranolol significantly reduced the tachycardic response to CGS 21680, with no change in the effect on MAP. ICI 118,551 increased BAY 60-6583-mediated renal and mesenteric flows, but did not affect the heart rate response. CGP 20712A attenuated the BAY 60-6583-induced tachycardia. These data imply a direct stimulation of the sympathetic activity via cardiac ß1 -adrenoceptors as a mechanism for the A2A - and A2B -induced tachycardia. However, the regionally selective effects of A2B agonists on vascular conductance were independent of sympathetic activity and may be exploitable for the treatment of acute kidney injury and mesenteric ischemia.
Assuntos
Antagonistas Adrenérgicos beta , Propranolol , Adenosina/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Pressão Sanguínea , Masculino , Propranolol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/fisiologia , Taquicardia/induzido quimicamenteRESUMO
Animal models are essential for assessing cardiovascular responses to novel therapeutics. Cardiovascular safety liabilities represent a leading cause of drug attrition and better preclinical measurements are essential to predict drug-related toxicities. Presently, radiotelemetric approaches recording blood pressure are routinely used in preclinical in vivo haemodynamic assessments, providing valuable information on therapy-associated cardiovascular effects. Nonetheless, this technique is chiefly limited to the monitoring of blood pressure and heart rate alone. Alongside these measurements, Doppler flowmetry can provide additional information on the vasculature by simultaneously measuring changes in blood flow in multiple different regional vascular beds. However, due to the time-consuming and expensive nature of this approach, it is not widely used in the industry. Currently, analysis of waveform data obtained from telemetry and Doppler flowmetry typically examines averages or peak values of waveforms. Subtle changes in the morphology and variability of physiological waveforms have previously been shown to be early markers of toxicity and pathology. Therefore, a detailed analysis of pressure and flowmetry waveforms could enhance the understanding of toxicological mechanisms and the ability to translate these preclinical observations to clinical outcomes. In this review, we give an overview of the different approaches to monitor the effects of drugs on cardiovascular parameters (particularly regional blood flow, heart rate and blood pressure) and suggest that further development of waveform analysis could enhance our understanding of safety pharmacology, providing valuable information without increasing the number of in vivo studies needed.
RESUMO
Vascular endothelial growth factor (VEGF) is produced either as a pro-angiogenic or anti-angiogenic protein depending upon splice site choice in the terminal, eighth exon. Proximal splice site selection (PSS) in exon 8 generates pro-angiogenic isoforms such as VEGF(165), and distal splice site selection (DSS) results in anti-angiogenic isoforms such as VEGF(165)b. Cellular decisions on splice site selection depend upon the activity of RNA-binding splice factors, such as ASF/SF2, which have previously been shown to regulate VEGF splice site choice. To determine the mechanism by which the pro-angiogenic splice site choice is mediated, we investigated the effect of inhibition of ASF/SF2 phosphorylation by SR protein kinases (SRPK1/2) on splice site choice in epithelial cells and in in vivo angiogenesis models. Epithelial cells treated with insulin-like growth factor-1 (IGF-1) increased PSS and produced more VEGF(165) and less VEGF(165)b. This down-regulation of DSS and increased PSS was blocked by protein kinase C inhibition and SRPK1/2 inhibition. IGF-1 treatment resulted in nuclear localization of ASF/SF2, which was blocked by SPRK1/2 inhibition. Pull-down assay and RNA immunoprecipitation using VEGF mRNA sequences identified an 11-nucleotide sequence required for ASF/SF2 binding. Injection of an SRPK1/2 inhibitor reduced angiogenesis in a mouse model of retinal neovascularization, suggesting that regulation of alternative splicing could be a potential therapeutic strategy in angiogenic pathologies.
Assuntos
Processamento Alternativo , Inibidores da Angiogênese/biossíntese , RNA Mensageiro/biossíntese , Neovascularização Retiniana/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Inibidores da Angiogênese/genética , Animais , Linhagem Celular Transformada , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Neovascularização Retiniana/genética , Neovascularização Retiniana/terapia , Fatores de Processamento de Serina-Arginina , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
BACKGROUND AND PURPOSE: VEGF-A is a key mediator of angiogenesis, primarily signalling via VEGF receptor 2 (VEGFR2). Endothelial cells also express the co-receptor neuropilin-1 (NRP1) that potentiates VEGF-A/VEGFR2 signalling. VEGFR2 and NRP1 had distinct real-time ligand binding kinetics when monitored using BRET. We previously characterised fluorescent VEGF-A isoforms tagged at a single site with tetramethylrhodamine (TMR). Here, we explored differences between VEGF-A isoforms in living cells that co-expressed both receptors. EXPERIMENTAL APPROACH: Receptor localisation was monitored in HEK293T cells expressing both VEGFR2 and NRP1 using membrane-impermeant HaloTag and SnapTag technologies. To isolate ligand binding pharmacology at a defined VEGFR2/NRP1 complex, we developed an assay using NanoBiT complementation technology whereby heteromerisation is required for luminescence emissions. Binding affinities and kinetics of VEGFR2-selective VEGF165 b-TMR and non-selective VEGF165 a-TMR were monitored using BRET from this defined complex. KEY RESULTS: Cell surface VEGFR2 and NRP1 were co-localised and formed a constitutive heteromeric complex. Despite being selective for VEGFR2, VEGF165 b-TMR had a distinct kinetic ligand binding profile at the complex that largely remained elevated in cells over 90 min. VEGF165 a-TMR bound to the VEGFR2/NRP1 complex with kinetics comparable to those of VEGFR2 alone. Using a binding-dead mutant of NRP1 did not affect the binding kinetics or affinity of VEGF165 a-TMR. CONCLUSION AND IMPLICATIONS: This NanoBiT approach enabled real-time ligand binding to be quantified in living cells at 37°C from a specified complex between a receptor TK and its co-receptor for the first time.
Assuntos
Neuropilina-1 , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Cinética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Fluorescent ligand technologies have proved to be powerful tools to improve our understanding of ligand-receptor interactions. Here we have characterized a small focused library of nine fluorescent ligands based on the highly selective ß2 -adrenoceptor (ß2 AR) antagonist ICI 118,551. The majority of fluorescent ICI 118,551 analogs had good affinity for the ß2 AR (pKD >7.0) with good selectivity over the ß1 AR (pKD <6.0). The most potent and selective ligands being 8c (ICI 118,551-Gly-Ala-BODIPY-FL-X; ß2 AR pKD 7.48), 9c (ICI 118,551-ßAla-ßAla-BODIPY-FL-X; ß2 AR pKD 7.48), 12a (ICI 118,551-PEG-BODIPY-X-630/650; ß2 AR pKD 7.56), and 12b (ICI 118,551-PEG-BODIPY-FL; ß2 AR pKD 7.42). 9a (ICI 118,551-ßAla-ßAla-BODIPY-X-630/650) had the highest affinity at recombinant ß2 ARs (pKD 7.57), but also exhibited significant binding affinity to the ß1 AR (pKD 6.69). Nevertheless, among the red fluorescent ligands, 9a had the best imaging characteristics in recombinant HEK293 T cells and labeling was mostly confined to the cell surface. In contrast, 12a showed the highest propensity to label intracellular ß2 ARs in HEK293 T cell expressing exogenous ß2 ARs. This suggests that a combination of the polyethylene glycol (PEG) linker and the BODIPY-X-630/650 makes this ICI 118,551 derivative particularly susceptible to crossing the cell membrane to access the intracellular ß2 ARs. We have also used these ligands in combination with CRISPR/Cas9 genome-edited HEK293 T cells to undertake for the first time real-time ligand binding to native HEK293 T ß2 ARs at low native receptor expression levels. These studies provided quantitative data on ligand-binding characteristics but also allowed real-time visualization of the ligand-binding interactions in genome-edited cells using NanoBRET luminescence imaging.
Assuntos
Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Propanolaminas/farmacologia , Receptores Adrenérgicos beta 2 , Sistemas CRISPR-Cas , Fluorescência , Edição de Genes , Células HEK293 , Humanos , Ligantes , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismoRESUMO
Receptor internalization in response to prolonged agonist treatment is an important regulator of G protein-coupled receptor (GPCR) function. The adenosine A1 receptor (A1AR) is one of the adenosine receptor family of GPCRs, and evidence for its agonist-induced internalization is equivocal. The recently developed NanoBiT technology uses split NanoLuc Luciferase to monitor changes in protein interactions. We have modified the human A1AR on the N-terminus with the small high-affinity HiBiT tag. In the presence of the large NanoLuc subunit (LgBiT), complementation occurs, reconstituting a full-length functional NanoLuc Luciferase. Here, we have used complemented luminescence to monitor the internalization of the A1AR in living HEK293 cells. Agonist treatment resulted in a robust decrease in cell-surface luminescence, indicating an increase in A1AR internalization. These responses were inhibited by the A1AR-selective antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), with an antagonist affinity that closely matched that measured using ligand binding with a fluorescent A1 receptor antagonist (CA200645). The agonist potencies for inducing A1AR internalization were very similar to the affinities previously determined by ligand binding, suggesting little or no amplification of the internalization response. By complementing the HiBiT tag to exogenous purified LgBiT, it was also possible to perform NanoBRET ligand-binding experiments using HiBiT-A1AR. This study demonstrates the use of NanoBiT technology to monitor internalization of the A1AR and offers the potential to combine these experiments with NanoBRET ligand-binding assays.
Assuntos
Adenosina/genética , Receptor A1 de Adenosina/genética , Receptores Acoplados a Proteínas G/genética , Adenosina/química , Agonistas do Receptor A1 de Adenosina/farmacologia , Células HEK293 , Humanos , Cinética , Ligantes , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Receptor A1 de Adenosina/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Xantinas/farmacologiaRESUMO
BACKGROUND AND PURPOSE: Adenosine is a local mediator that regulates physiological and pathological processes via activation of four GPCRs (A1 , A2A , A2B , and A3 ). We have investigated the effect of two A1 -receptor-selective agonists and the novel A1 -receptor bitopic ligand VCP746 on the rat cardiovascular system. EXPERIMENTAL APPROACH: The regional haemodynamic responses of these agonist was investigated in conscious rats. Male Sprague-Dawley rats (350-450 g) were chronically implanted with pulsed Doppler flow probes on the renal, mesenteric arteries and the descending abdominal aorta and the jugular vein and caudal artery catheterized. Cardiovascular responses were measured following intravenous infusion (3 min each dose) of CCPA (120, 400, and 1,200 ng·kg-1 ·min-1 ), capadenoson or adenosine (30, 100, and 300 µg·kg-1 ·min-1 ), or VCP746 (6, 20, and 60 µg·kg-1 ·min-1 ) following pre-dosing with DPCPX (0.1 mg·kg-1 , i.v.) or vehicle. KEY RESULTS: CCPA produced a significant A1 -receptor-mediated decrease in heart rate that was accompanied by vasoconstrictions in the renal and mesenteric vascular beds but an increase in hindquarters vascular conductance. The partial agonist capadenoson also produced an A1 -receptor-mediated bradycardia. In contrast, VCP746 produced increases in heart rate and renal and mesenteric vascular conductance that were not mediated by A1 -receptors. In vitro studies confirmed that VCP746 had potent agonist activity at both A2A - and A2B -receptors. CONCLUSIONS AND IMPLICATIONS: These results suggest VCP746 mediates its cardiovascular effects via activation of A2 rather than A1 adenosine receptors. This has implications for the design of future bitopic ligands that incorporate A1 allosteric ligand moieties.
Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina/análogos & derivados , Sistema Cardiovascular/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Tiofenos/farmacologia , Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Sistema Cardiovascular/metabolismo , Estado de Consciência , Agonismo Parcial de Drogas , Frequência Cardíaca/efeitos dos fármacos , Ligantes , Masculino , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Tiazóis/farmacologiaRESUMO
Camelid single-domain antibody fragments (nanobodies) offer the specificity of an antibody in a single 15-kDa immunoglobulin domain. Their small size allows for easy genetic manipulation of the nanobody sequence to incorporate protein tags, facilitating their use as biochemical probes. The nanobody VUN400, which recognizes the second extracellular loop of the human CXCR4 chemokine receptor, was used as a probe to monitor specific CXCR4 conformations. VUN400 was fused via its C terminus to the 11-amino-acid HiBiT tag (VUN400-HiBiT) which complements LgBiT protein, forming a full-length functional NanoLuc luciferase. Here, complemented luminescence was used to detect VUN400-HiBiT binding to CXCR4 receptors expressed in living HEK293 cells. VUN400-HiBiT binding to CXCR4 could be prevented by orthosteric and allosteric ligands, allowing VUN400-HiBiT to be used as a probe to detect allosteric interactions with CXCR4. These data demonstrate that the high specificity offered by extracellular targeted nanobodies can be utilized to probe receptor pharmacology.