RESUMO
Tardigrades are microscopic animals that survive desiccation by inducing biostasis. To survive drying tardigrades rely on intrinsically disordered CAHS proteins, which also function to prevent perturbations induced by drying in vitro and in heterologous systems. CAHS proteins have been shown to form gels both in vitro and in vivo, which has been speculated to be linked to their protective capacity. However, the sequence features and mechanisms underlying gel formation and the necessity of gelation for protection have not been demonstrated. Here we report a mechanism of fibrillization and gelation for CAHS D similar to that of intermediate filament assembly. We show that in vitro, gelation restricts molecular motion, immobilizing and protecting labile material from the harmful effects of drying. In vivo, we observe that CAHS D forms fibrillar networks during osmotic stress. Fibrillar networking of CAHS D improves survival of osmotically shocked cells. We observe two emergent properties associated with fibrillization; (i) prevention of cell volume change and (ii) reduction of metabolic activity during osmotic shock. We find that there is no significant correlation between maintenance of cell volume and survival, while there is a significant correlation between reduced metabolism and survival. Importantly, CAHS D's fibrillar network formation is reversible and metabolic rates return to control levels after CAHS fibers are resolved. This work provides insights into how tardigrades induce reversible biostasis through the self-assembly of labile CAHS gels.
Assuntos
Proteínas Intrinsicamente Desordenadas , Tardígrados , Animais , Dessecação , Tardígrados/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Géis/metabolismoRESUMO
We present a coarse-grained computer model designed to study the growth of fibres in a synthetic self-assembling peptide system. The system consists of two 28 residue α-helical sequences, denoted AB and CD, in which the interactions between the half peptides, A, B, C and D, may be tuned individually to promote different types of growth behaviour. In the model, AB and CD are represented by double ended rods, with interaction sites distributed along their lengths. Monte Carlo simulations are performed to follow fibre growth. It is found that lateral and longitudinal growth of the fibre are governed by different mechanisms--the former is diffusion limited with a very small activation energy for the addition of units, whereas the latter occurs via a process of secondary nucleation at the fibre ends. As a result, longitudinal growth generally proceeds more slowly than lateral growth. Furthermore, it is shown that the aspect ratio of the growing fibre may be controlled by adjusting the temperature and the relative strengths of the interactions. The predictions of the model are discussed in the context of published data from real peptide systems.
Assuntos
Materiais Biomiméticos/química , Simulação por Computador , Peptídeos/química , Anisotropia , Materiais Biomiméticos/síntese química , Microscopia Eletrônica de Transmissão , Método de Monte Carlo , Peptídeos/síntese química , Estrutura Secundária de Proteína , Soluções/química , TemperaturaRESUMO
Statistical approaches have been applied to examine amino acid pairing preferences within parallel beta-sheets. The main chain hydrogen bonding pattern in parallel beta-sheets means that, for each residue pair, only one of the residues is involved in main chain hydrogen bonding with the strand containing the partner residue. We call this the hydrogen bonded (HB) residue and the partner residue the non-hydrogen bonded (nHB) residue, and differentiate between the favorability of a pair and that of its reverse pair, e.g. Asn(HB)-Thr(nHB)versus Thr(HB)-Asn(nHB). Significantly (p < or = 0.000001) favoured pairings were rationalised using stereochemical arguments. For instance, Asn(HB)-Thr(nHB) and Arg(HB)-Thr(nHB) were favoured pairs, where the residues adopted favoured chi1 rotamer positions that allowed side-chain interactions to occur. In contrast, Thr(HB)-Asn(nHB) and Thr(HB)-Arg(nHB) were not significantly favoured, and could only form side-chain interactions if the residues involved adopted less favourable chi1 conformations. The favourability of hydrophobic pairs e.g. Ile(HB)-Ile(nHB), Val(HB)-Val(nHB) and Leu(HB)-Ile(nHB) was explained by the residues adopting their most preferred chi1 and chi2 conformations, which enabled them to form nested arrangements. Cysteine-cysteine pairs are significantly favoured, although these do not form intrasheet disulphide bridges. Interactions between positively and negatively charged residues were asymmetrically preferred: those with the negatively charged residue at the HB position were more favoured. This trend was accounted for by the presence of general electrostatic interactions, which, based on analysis of distances between charged atoms, were likely to be stronger when the negatively charged residue is the HB partner. The Arg(HB)-Asp(nHB) interaction was an exception to this trend and its favorability was rationalised by the formation of specific side-chain interactions. This research provides rules that could be applied to protein structure prediction, comparative modelling and protein engineering and design. The methods used to analyse the pairing preferences are automated and detailed results are available (http://www.rubic.rdg.ac.uk/betapairprefsparallel/).
Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Estrutura Secundária de Proteína , Proteínas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas/metabolismo , Eletricidade EstáticaRESUMO
For various reasons, it seems sensible to redesign or design proteins from the inside out. Past approaches in this field have involved iterations of mutagenesis and characterisation to 'evolve' designs. Increasingly, combinatorial approaches are being taken to select 'fit' sequences from libraries of variant proteins. In particular, in silico methods have been used to good effect. More recently, experimental methods have been developed and improved. We are now in a position to redesign stability and function into natural protein frameworks confidently and to attempt de novo designs for more ambitious targets.
Assuntos
Proteínas/química , Proteínas/síntese química , Algoritmos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas do Capsídeo , Técnicas de Química Combinatória , Biologia Computacional , Proteínas de Ligação a DNA , Desenho de Fármacos , Escherichia coli , Zíper de Leucina/genética , Modelos Moleculares , Mutação , Proteínas/genética , Proteínas de Ligação a RNA/genética , Proteínas Virais de FusãoRESUMO
The coiled coil is arguably the simplest protein-structure motif and probably the most ubiquitous facilitator of protein-protein interactions. Coiled coils comprise two or more alpha-helices that wind around each other to form "supercoils". The hallmark of most coiled coils is a regular sequence pattern known as the heptad repeat. Despite this apparent simplicity and relatedness at the sequence level, coiled coils display a considerable degree of structural diversity: the helices may be arranged parallel or anti-parallel and may form a variety of oligomer states. To aid studies of coiled coils, we developed SOCKET, a computer program to identify these motifs automatically in protein structures. We used SOCKET to gather a set of unambiguous coiled-coil structures from the RCSB Protein Data Bank. Rather than searching for sequence features, the algorithm recognises the characteristic knobs-into-holes side-chain packing of coiled coils; this proved to be straightforward to implement and was able to distinguish coiled coils from the great majority of helix-helix packing arrangements observed in globular domains. SOCKET unambiguously defines coiled-coil helix boundaries, oligomerisation states and helix orientations, and also assigns heptad registers. Structures retrieved from the Protein Data Bank included parallel and anti-parallel variants of two, three and four-stranded coiled coils, one example of a parallel pentamer and a small number of structures that extend the classical description of a coiled coil. We anticipate that our structural database and the associated sequence data that we have gathered will be of use in identifying principles for coiled-coil assembly, prediction and design. To illustrate this we give examples of sequence and structural analyses of the structures that are possible using the new data bases, and we present amino acid profiles for the heptad repeats of different motifs.
Assuntos
Motivos de Aminoácidos , Proteínas de Ligação a DNA , Proteínas/química , Proteínas de Saccharomyces cerevisiae , Software , Algoritmos , Sequência de Aminoácidos , Aminoácidos/análise , Sítios de Ligação , Biologia Computacional/métodos , Bases de Dados como Assunto , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Internet , Zíper de Leucina , Modelos Moleculares , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas/metabolismo , Relação Estrutura-AtividadeRESUMO
Despite considerable effort there is no consensus as to what interaction, or set of interactions, provides the dominant force that drives protein folding and specifies folded protein structures. A key thermodynamic observation is that a large drop in heat capacity (delta Cp) usually accompanies folding in water. Various factors may contribute to this effect, especially changes in the structure of the solvent upon exposure of both non-polar and polar groups in the unfolded state. The unfavourable Gibbs free energy of solvating non-polar groups, in particular, is thought to provide a central driving force for folding (the hydrophobic effect) but the role of solvent ordering in this remains a matter of controversy. We report here a series of experiments that show that a protein can fold into its native conformation under conditions where solvent ordering effects are demonstrably negligible. In methanol/water mixtures ubiquitin unfolds reversibly with a delta Cp value that falls close to zero above about 30% (v/v) methanol. We are able to reason, on the basis of these data, that the net contribution to the heat capacity change arising primarily from the protein structure itself is not significant and that contributions from changes in solvent ordering are rendered negligible by the change in composition. Nuclear magnetic resonance measurements, however, indicate that non-polar side-chains do still become exposed to solvent in the denatured state under these conditions. The combination of these results and model compound studies suggests that the elimination of ordering effects is an intrinsic property of the mixed solvent. We can, therefore, conclude that the solvent ordering component of the hydrophobic effect is not an obligatory factor in determining the three-dimensional structure into which the protein will fold.
Assuntos
Dobramento de Proteína , Ubiquitinas/química , Animais , Varredura Diferencial de Calorimetria , Bovinos , Espectroscopia de Ressonância Magnética , Solubilidade , Solventes , Termodinâmica , Água/químicaRESUMO
The nature and interaction of structural elements in a partially ordered form of ubiquitin, the A-state, which is populated at low pH in 40 to 60% aqueous methanol, have been investigated. Two synthetic peptides have been studied under the same conditions: U(1-21), corresponding to the N-terminal beta-hairpin in the native (N) and A-states of ubiquitin and U(1-35), which includes this hairpin plus an alpha-helix. Circular dichroism studies indicate that, although these peptides are largely unfolded in water, their structural content in 30 and 60% methanol is comparable with the corresponding native secondary structure. Sequence-specific assignments of the 1H n.m.r. spectra of U(1-35) in aqueous methanol and subsequent secondary structure determination confirm the conservation in detail of native-like secondary structure. Corresponding resonances in spectra of U(1-35), U(1-21) and the A-state itself were found to have closely similar chemical shifts, suggesting that the beta-hairpin exists independently in the partially folded protein, with little or no influence from the rest of the molecule. This is confirmed by the virtual absence in nuclear Overhauser enhancement spectroscopy and rotating frame nuclear Overhauser enhancement spectroscopy spectra of nuclear Overhauser enhancement effects between structural elements. c.d. and n.m.r. evidence suggests that structure in the C-terminal half of the molecule in the A-state is largely non-native. Thus, although methanol is necessary to assure its stability in the absence of wider native interactions, the structure of the beta-hairpin, including the register of its hydrogen bonding, appears to be determined entirely by its own sequence. This intrinsic structural preference in the first part of the ubiquitin sequence is much stronger than in the C-terminal half, a conclusion reflected in the results from a variety of secondary structure prediction algorithms.
Assuntos
Estrutura Secundária de Proteína , Ubiquitinas/química , Sequência de Aminoácidos , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Metanol , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/químicaRESUMO
An algorithm based on the profile method was developed that faithfully distinguishes between the amino acid sequences of dimeric and trimeric coiled coils. Normalized sequence profiles derived from nonhomologous, two- and three-stranded, coiled-coil sequences with unambiguous registers were used to assign dimer and trimer propensities to test sequences. The difference between the dimer and trimer profile scores accurately reflected the preferred oligomerization state. The method relied on two strategies that may be generally applicable to profile calculations--profile values of solvent-exposed residues and of amino acids that were underrepresented in the data-base were given zero weight. Differences between the dimer and trimer profiles revealed sequence patterns that match and extend experimental studies of oligomer specification.
Assuntos
Conformação Proteica , Algoritmos , Sequência de Aminoácidos , Aminoácidos/química , Biopolímeros/química , Modelos Químicos , SoftwareRESUMO
The coiled coil is a ubiquitous protein-folding motif. It generally is accepted that coiled coils are characterized by sequence patterns known as heptad repeats. Such patterns direct the formation and assembly of amphipathic alpha-helices, the hydrophobic faces of which interface in a specific manner first proposed by Crick and termed "knobs-into-holes packing". We developed software, SOCKET, to recognize this packing in protein structures. As expected, in a trawl of the protein data bank, we found examples of canonical coiled coils with a single contiguous heptad repeat. In addition, we identified structures with multiple, overlapping heptad repeats. This observation extends Crick's original postulate: Multiple, offset heptad repeats help explain assemblies with more than two helices. Indeed, we have found that the sequence offset of the multiple heptad repeats is related to the coiled-coil oligomer state. Here we focus on one particular sequence motif in which two heptad repeats are offset by two residues. This offset sets up two hydrophobic faces separated by approximately 150 degrees -160 degrees around the alpha-helix. In turn, two different combinations of these faces are possible. Either similar or opposite faces can interface, which leads to open or closed multihelix assemblies. Accordingly, we refer to these two forms as alpha-sheets and alpha-cylinders. We illustrate these structures with our own predictions and by reference to natural variants on these designs that have recently come to light.
Assuntos
Motivos de Aminoácidos , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Bases de Dados como Assunto , Glicoproteínas de Membrana/química , Modelos Moleculares , Dobramento de Proteína , SoftwareRESUMO
Antiparallel beta-sheets present two distinct environments to inter-strand residue pairs: beta(A,HB) sites have two backbone hydrogen bonds; whereas at beta(A,NHB) positions backbone hydrogen bonding is precluded. We used statistical methods to compare the frequencies of amino acid pairs at each site. Only approximately 10% of the 210 possible pairs showed occupancies that differed significantly between the two sites. Trends were clear in the preferred pairs, and these could be explained using stereochemical arguments. Cys-Cys, Aromatic-Pro, Thr-Thr, and Val-Val pairs all preferred the beta(A,NHB) site. In each case, the residues usually adopted sterically favored chi1 conformations, which facilitated intra-pair interactions: Cys-Cys pairs formed disulfide bonds; Thr-Thr pairs made hydrogen bonds; Aromatic-Pro and Val-Val pairs formed close van der Waals contacts. In contrast, to make intimate interactions at a beta(A,HB) site, one or both residues had to adopt less favored chi1 geometries. Nonetheless, pairs containing glycine and/or aromatic residues were favored at this site. Where glycine and aromatic side chains combined, the aromatic residue usually adopted the gauche conformation, which promoted novel aromatic ring-peptide interactions. This work provides rules that link protein sequence and tertiary structure, which will be useful in protein modeling, redesign, and de novo design. Our findings are discussed in light of previous analyses and experimental studies.
Assuntos
Peptídeos/química , Estrutura Secundária de Proteína , Sítios de Ligação , Simulação por Computador , Cisteína/química , Dissulfetos/química , Ligação de Hidrogênio , Isoleucina/química , Modelos Moleculares , Prolina/química , Conformação Proteica , Serina/química , Treonina/química , Valina/químicaRESUMO
Proline lacks an amide proton when found within proteins. This precludes hydrogen bonding between it and hydrogen bond acceptors, and thus often restricts the residue to the first four positions of an alpha-helix. Helices with proline after position four have a pronounced kink [(1988) J. Mol. Biol. 203, 601-619]. In these cases, we find that the proline residue almost almost always occurs on the solvent exposed face of each helix. This positioning facilitates the compensatory hydrogen bonding between solvent and residues P-3 and P-4 (relative to proline, P), through the formation of the kink. Further, it aids in the packing of long helical structures around globular protein structures.
Assuntos
Prolina/química , Conformação Proteica , Proteínas/ultraestrutura , Citrato (si)-Sintase/ultraestrutura , Ligação de Hidrogênio , Proteínas de Membrana , Modelos Moleculares , Estrutura Molecular , Software , Solubilidade , SolventesRESUMO
The jellyroll structure is a special case of the Greek key topology and, to date, has only been observed in complete form in one of its four possible arrangements. Like other elements of super-secondary structure involving the beta-strand (e.g. the beta alpha beta unit) the known structure forms a right-handed superhelix. The possibility of losing such tertiary information and other problems associated with representing these structures by two-dimensional topology diagrams are discussed. A series of rules are presented which allow this three-dimensional information to be represented in two-dimensional topology diagrams from which the handedness of a jellyroll structure can be determined.
Assuntos
Conformação ProteicaRESUMO
The coiled coil is a ubiquitous motif that guides many different protein-protein interactions. The accepted hallmark of coiled coils is a seven-residue (heptad) sequence repeat. The positions of this repeat are labelled a-b-c-d-e-f-g, with residues at a and d tending to be hydrophobic. Such sequences form amphipathic alpha-helices, which assemble into helical bundles via knobs-into-holes interdigitation of residues from neighbouring helices. We wrote an algorithm, SOCKET, to identify this packing in protein structures, and used this to gather a database of coiled-coil structures from the Protein Data Bank. Surprisingly, in addition to commonly accepted structures with a single, contiguous heptad repeat, we identified sequences with multiple, offset heptad repeats. These 'new' sequence patterns help to explain oligomer-state specification in coiled coils. Here we focus on the structural consequences for sequences with two heptad repeats offset by two residues, i.e. a/f'-b/g'-c/a'-d/b'-e/c'-f/d'-g/e'. This sets up two hydrophobic seams on opposite sides of the helix formed. We describe how such helices may combine to bury these hydrophobic surfaces in two different ways and form two distinct structures: open 'alpha-sheets' and closed 'alpha-cylinders'. We highlight these with descriptions of natural structures and outline possibilities for protein design.
Assuntos
Proteínas/química , Animais , Desenho de Fármacos , Zíper de Leucina , Modelos Moleculares , Estrutura Secundária de Proteína , Sequências Repetitivas de Aminoácidos , SoftwareRESUMO
We have applied the method described in the preceding paper [Finucane, M. D., et al. (1999) Biochemistry 38, 11604-11612], namely, stability-based selection using phage display, to explore the sequence requirements for packing in the hydrophobic core of ubiquitin. In contrast to the parent protein, which was a structurally compromised mutant, the selected variants could be overexpressed and purified in yields for structural studies. In particular, CD and NMR measurements showed that the selectants folded correctly to stable native-like structures. These points demonstrate the utility of our core-directed method for stabilizing and redesigning proteins. In addition and in contrast to foregoing studies on other proteins, which suggest that hydrophobic cores permit substitutions provided that hydrophobicity and core volumes are generally conserved, we find that the core of ubiquitin is surprisingly intolerant of amino acid substitutions; variants that survived our selection showed a clear consensus for the wild-type sequence. It is probable that our results differed from those from other groups for two reasons. First, ubiquitin may be unusual in that it has strict sequence requirements for its structure and stability. We discuss this result in light of sequence conservation in the eukaryotic ubiquitins and proteins of the ubiquitin structural superfamily. Second, our mutants were selected solely on the basis of stability, in contrast to the other studies that rely on function-based selection. The latter may lead to proteins that are more plastic and tolerant of substitutions.
Assuntos
Ubiquitinas/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Dicroísmo Circular , Primers do DNA , Temperatura Alta , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Homologia de Sequência de Aminoácidos , Ubiquitinas/genéticaRESUMO
A stable, partially structured state of ubiquitin, the A-state, is formed at pH 2.0 in 60% methanol/40% water at 298 K. Detailed characterization of the structure of this state has been carried out by 2D NMR spectroscopy. Assignment of slowly exchanging amide resonances protected from the solvent in the native and A-state shows that gross structural reorganization of the protein has not occurred and that the A-state contains a subset of the interactions present in the native state (N-state). Vicinal coupling constants and NOESY data show the presence of the first two strands of the five-strand beta-sheet that is present in the native protein and part of the third beta-strand. The hydrophobic face of the beta-sheet in the A-state is covered by a partially structured alpha-helix, tentatively assigned to residues 24-34, that is considerably more flexible than the alpha-helix in the N-state. There is evidence for some fixed side-chain--side-chain interactions between these two units of structure. The turn-rich area of the protein, which contains seven reverse turns and a short piece of 3(10) helix, does not appear to be structured in the A-state and is approaching random coil.
Assuntos
Ubiquitinas/química , Sequência de Aminoácidos , Animais , Bovinos , Eritrócitos/química , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Conformação Proteica , Desnaturação Proteica , TemperaturaRESUMO
A conserved asparagine (Asn 16) buried in the interface of the GCN4 leucine zipper selectively favours the parallel, dimeric, coiled-coil structure. To test if other polar residues confer oligomerization specificity, the structural effects of Gln and Lys substitutions for Asn 16 were characterized. Like the wild-type peptide, the Asn 16Lys mutant formed exclusively dimers. In contrast, Gln 16, despite its chemical similarity to Asn, allowed the peptide to form both dimers and trimers. The Gln 16 side chain was accommodated by qualitatively different interactions in the dimer and trimer crystal structures. These findings demonstrate that the structural selectivity of polar residues results not only from the burial of polar atoms, but also depends on the complementarity of the side-chain stereochemistry with the surrounding structural environment.
Assuntos
Proteínas de Ligação a DNA , Proteínas Fúngicas/química , Zíper de Leucina , Conformação Proteica , Proteínas Quinases/química , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Dimerização , Proteínas Fúngicas/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Quinases/genéticaRESUMO
Proline residues are a common feature of known and putative transmembrane helices of transport proteins. We find considerable consistency in the positioning of these residues within the structures. The proline residues are usually found on the hydrophilic (interior) faces of the pore-forming helices. This general observation adds considerable support to hypotheses concerning the structure of the ion-channels formed by alamethicin and melittin. As proline kinks helices, our observation suggests that the pores formed in ion-channel proteins tend to be funnel-shaped having a constriction near their center. Such a structure can aid in the capture of ions by the channel (an entropic effect) and should help in the gating mechanism of the channel. The observation will aid identification of putative transmembrane helices of ion-channels.
Assuntos
Canais Iônicos/química , Prolina , Animais , Bacteriorodopsinas/química , Membrana Celular/ultraestrutura , Drosophila , Electrophorus , Substâncias Macromoleculares , Meliteno/química , Membranas/ultraestrutura , Camundongos , Modelos Estruturais , Conformação ProteicaRESUMO
Chemical shifts of resonances of specific protons in the 1H NMR spectrum of thermally denatured hen lysozyme have been determined by exchange correlation with assigned native state resonances in 2D NOESY spectra obtained under conditions where the two states are interconverting. There are subtle but widespread deviations of the measured shifts from the values which would be anticipated for a random coil; in the case of side chain protons these are virtually all net upfield shifts and it is shown that this may be the averaged effect of interactions with aromatic rings in a partially collapsed denatured state. In a very few cases, notably that of two sequential tryptophan residues, it is possible to interpret these effects in terms of specific, local interresidue interactions. Generally, however, there is no correlation with either native state shift perturbations or with sequence proximity to aromatic groups. Diminution of most of the residual shift perturbations on reduction of the disulfide cross-links confirms that they are not simply effects of residues adjacent in the sequence. Similar effects of chemical denaturants, with the disulfides intact, demonstrate that the shift perturbations reflect an enhanced tendency to side chain clustering in the thermally denatured state. The temperature dependences of the shift perturbations suggest that this clustering is noncooperative and is driven by small, favorable enthalpy changes. While the extent of conformational averaging is clearly much greater than that observed for a homologous protein, alpha-lactalbumin, in its partially folded "molten globule" state, the results clearly show that thermally denatured lysozyme differs substantially from a random coil, principally in that it is partially hydrophobically collapsed.
Assuntos
Muramidase/química , Análise por Conglomerados , Dissulfetos/química , Lactalbumina/química , Espectroscopia de Ressonância Magnética , Muramidase/metabolismo , Conformação Proteica , Desnaturação Proteica , Prótons , Solubilidade , Termodinâmica , Difração de Raios XRESUMO
A three-disulphide derivative of hen egg-white lysozyme was made by selective reduction and carboxymethylation of one of the four original disulphide bridges. N-Terminal sequencing and two-dimensional 1H-n.m.r. spectroscopy revealed that the disulphide bridge linking cysteine residues 6 and 127 had been modified and that the three remaining disulphide bonds were native-like in nature. Analysis of COSY and NOESY spectra indicated that the three-disulphide lysozyme (CM6.127-lysozyme retains the same secondary and tertiary structure as its four-disulphide counterpart; its stability to pH and temperature is, however, dramatically decreased. N.m.r. spectroscopy was used to characterize the thermal folding and unfolding transition of CM6.127-lysozyme. Not only is the transition still a highly co-operative event, but the enthalpy change associated with folding and unfolding resembles that of intact lysozyme when their differences in thermal stability are taken into consideration. The significance of these results in terms of the folding process of lysozyme is discussed. By contrast with authentic lysozyme, CM6.127-lysozyme was found to exist in an unfolded state at pH 2 at room temperature. N.m.r. spectroscopy and c.d. were used to characterize this state. Unlike their homologous relative, alpha-lactalbumin, which exists in a partially folded molten globule state under these conditions, only residual non-native-like structure persists in the acid-unfolded state of CM6.127-lysozyme. These results indicate that the difference in folding behaviour of lysozyme and alpha-lactalbumin cannot be accounted for simply by their differences in thermal stability.
Assuntos
Muramidase/química , Compostos de Sulfidrila/química , Animais , Galinhas , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Feminino , Temperatura Alta , Espectroscopia de Ressonância Magnética , Espectrofotometria UltravioletaRESUMO
Principles that guide folding of coiled coils were tested by designing three peptides that preferentially associate with each other to form a heterotrimeric coiled coil. The core positions of the designed helices contained residues that promote formation of trimeric coiled coils. Ionic interactions were employed to mediate heterospecificity, and negative design was used to favor formation of the heterotrimer over alternative arrangements. A program was written to select sequences that maximized the number of attractive interhelical interactions in a parallel heterotrimer and the number of repulsive electrostatic interactions in alternative species. Solution studies indicate that an equimolar mixture of the three peptides forms a helical trimer with high specificity and stability. These results validate the principles used to guide the design and suggest that the heterotrimer may serve as a useful, autonomous trimerization domain.