Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464227

RESUMO

Selective and controlled expansion of endogenous ß-cells has been pursued as a potential therapy for diabetes. Ideally, such therapies would preserve feedback control of ß-cell proliferation to avoid excessive ß-cell expansion and an increased risk of hypoglycemia. Here, we identified a regulator of ß-cell proliferation whose inactivation results in controlled ß-cell expansion: the protein deacetylase Sirtuin 2 (SIRT2). Sirt2 deletion in ß-cells of mice increased ß-cell proliferation during hyperglycemia with little effect in homeostatic conditions, indicating preservation of feedback control of ß-cell mass. SIRT2 restrains proliferation of human islet ß-cells cultured in glucose concentrations above the glycemic set point, demonstrating conserved SIRT2 function. Analysis of acetylated proteins in islets treated with a SIRT2 inhibitor revealed that SIRT2 deacetylates enzymes involved in oxidative phosphorylation, dampening the adaptive increase in oxygen consumption during hyperglycemia. At the transcriptomic level, Sirt2 inactivation has context-dependent effects on ß-cells, with Sirt2 controlling how ß-cells interpret hyperglycemia as a stress. Finally, we provide proof-of-principle that systemic administration of a GLP1-coupled Sirt2-targeting antisense oligonucleotide achieves ß-cell selective Sirt2 inactivation and stimulates ß-cell proliferation under hyperglycemic conditions. Overall, these studies identify a therapeutic strategy for increasing ß-cell mass in diabetes without circumventing feedback control of ß-cell proliferation.

2.
Biofabrication ; 16(2)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38128127

RESUMO

Insulin is an essential regulator of blood glucose homeostasis that is produced exclusively byßcells within the pancreatic islets of healthy individuals. In those affected by diabetes, immune inflammation, damage, and destruction of isletßcells leads to insulin deficiency and hyperglycemia. Current efforts to understand the mechanisms underlyingßcell damage in diabetes rely onin vitro-cultured cadaveric islets. However, isolation of these islets involves removal of crucial matrix and vasculature that supports islets in the intact pancreas. Unsurprisingly, these islets demonstrate reduced functionality over time in standard culture conditions, thereby limiting their value for understanding native islet biology. Leveraging a novel, vascularized micro-organ (VMO) approach, we have recapitulated elements of the native pancreas by incorporating isolated human islets within a three-dimensional matrix nourished by living, perfusable blood vessels. Importantly, these islets show long-term viability and maintain robust glucose-stimulated insulin responses. Furthermore, vessel-mediated delivery of immune cells to these tissues provides a model to assess islet-immune cell interactions and subsequent islet killing-key steps in type 1 diabetes pathogenesis. Together, these results establish the islet-VMO as a novel,ex vivoplatform for studying human islet biology in both health and disease.


Assuntos
Diabetes Mellitus , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA