Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Virol J ; 15(1): 7, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29316958

RESUMO

BACKGROUND: Swine influenza is a respiratory infection of pigs that may have a significant economic impact in affected herds and pose a threat to the human population since swine influenza A viruses (swIAVs) are zoonotic pathogens. Due to the increasing genetic diversity of swIAVs and because novel reassortants or variants may become enzootic or have zoonotic implications, surveillance is strongly encouraged. Therefore, diagnostic tests and advanced technologies able to identify the circulating strains rapidly are critically important. RESULTS: Several reverse transcription real-time PCR assays (RT-qPCRs) were developed to subtype European swIAVs in clinical samples previously identified as containing IAV genome. The RT-qPCRs aimed to discriminate HA genes of four H1 genetic lineages (H1av, H1hu, H1huΔ146-147, H1pdm) and one H3 lineage, and NA genes of two N1 lineages (N1, N1pdm) and one N2 lineage. After individual validation, each RT-qPCR was adapted to high-throughput analyses in parallel to the amplification of the IAV M gene (target for IAV detection) and the ß-actin gene (as an internal control), in order to test the ten target genes simultaneously on a large number of clinical samples, using low volumes of reagents and RNA extracts. CONCLUSION: The RT-qPCRs dedicated to IAV molecular subtyping enabled the identification of swIAVs from the four viral subtypes that are known to be enzootic in European pigs, i.e. H1avN1, H1huN2, H3N2 and H1N1pdm. They also made it possible to discriminate a new antigenic variant (H1huN2Δ146-147) among H1huN2 viruses, as well as reassortant viruses, such as H1huN1 or H1avN2 for example, and virus mixtures. These PCR techniques exhibited a gain in sensitivity as compared to end-point RT-PCRs, enabling the characterization of biological samples with low genetic loads, with considerable time saving. Adaptation to high-throughput analyses appeared effective, both in terms of specificity and sensitivity. This new development opens novel perspectives in diagnostic capacities that could be very useful for swIAV surveillance and large-scale epidemiological studies.


Assuntos
Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Animais , Linhagem Celular , Cães , Europa (Continente)/epidemiologia , Genes Virais , Variação Genética , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/imunologia , Células Madin Darby de Rim Canino , Tipagem Molecular/métodos , Infecções por Orthomyxoviridae/diagnóstico , Reprodutibilidade dos Testes , Suínos
2.
Anaerobe ; 49: 71-77, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29287670

RESUMO

Clostridium botulinum group III is mainly responsible for botulism in animals. It could lead to high animal mortality rates and, therefore, represents a major environmental and economic concern. Strains of this group harbor the botulinum toxin locus on an unstable bacteriophage. Since the release of the first complete C. botulinum group III genome sequence (strain BKT015925), strains have been found to contain others mobile elements encoding for toxin components. In this study, seven assays targeting toxin genes present on the genetic mobile elements of C. botulinum group III were developed with the objective to better characterize C. botulinum group III strains. The investigation of 110 C. botulinum group III strains and 519 naturally contaminated samples collected during botulism outbreaks in Europe showed alpha-toxin and C2-I/C2-II markers to be systematically associated with type C/D bont-positive samples, which may indicate an important role of these elements in the pathogenicity mechanisms. On the contrary, bont type D/C strains and the related positive samples appeared to contain almost none of the markers tested. Interestingly, 31 bont-negative samples collected on farms after a botulism outbreak revealed to be positive for some of the genetic mobile elements tested. This suggests loss of the bont phage, either in farm environment after the outbreak or during laboratory handling.


Assuntos
Botulismo/microbiologia , Botulismo/veterinária , Clostridium botulinum/genética , Sequências Repetitivas Dispersas , Animais , Toxinas Botulínicas/metabolismo , Clostridium botulinum/classificação , Clostridium botulinum/isolamento & purificação , Clostridium botulinum/metabolismo , Microbiologia Ambiental , Humanos
3.
Analyst ; 141(18): 5281-97, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27353114

RESUMO

Botulinum neurotoxin (BoNT) serotypes C and D and their mosaic variants CD and DC cause severe cases of botulism in animal husbandry and wildlife. Epidemiological data on the exact serotype or toxin variant causing outbreaks are rarely available, mainly because of their high sequence identity and the lack of fast and specific screening tools to detect and differentiate the four similar toxins. To fill this gap, we developed four highly specific sandwich enzyme-linked immunosorbent assays (ELISAs) able to detect and differentiate botulinum neurotoxins type BoNT/C, D, CD, and DC based on four distinct combinations of specific monoclonal antibodies targeting both conserved and divergent subdomains of the four toxins. Here, highly sensitive detection with detection limits between 2 and 24 pg mL(-1) was achieved. The ELISAs were extensively validated and results were compared with data obtained by quantitative real-time PCR using a panel of Clostridium botulinum strains, real sample materials from veterinary botulism outbreaks, and non-BoNT-producing Clostridia. Additionally, in order to verify the results obtained by ELISA screening, the new monoclonal antibodies were used for BoNT enrichment and subsequent detection (i) on a functional level by endopeptidase mass spectrometry (Endopep-MS) assays and (ii) on a protein sequence level by LC-MS/MS spectrometry. Based on all technical information gathered in the validation study, the four differentiating ELISAs turned out to be highly reliable screening tools for the rapid analysis of veterinary botulism cases and should aid future field investigations of botulism outbreaks and the acquisition of epidemiological data.


Assuntos
Toxinas Botulínicas/classificação , Ensaio de Imunoadsorção Enzimática , Espectrometria de Massas , Sequência de Aminoácidos , Animais , Clostridium botulinum , Sorogrupo
4.
Anaerobe ; 38: 7-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26545739

RESUMO

Diagnosis of avian botulism is based on clinical symptoms, which are indicative but not specific. Laboratory investigations are therefore required to confirm clinical suspicions and establish a definitive diagnosis. Real-time PCR methods have recently been developed for the detection of Clostridium botulinum group III producing type C, D, C/D or D/C toxins. However, no study has been conducted to determine which types of matrices should be analyzed for laboratory confirmation using this approach. This study reports on the comparison of different matrices (pooled intestinal contents, livers, spleens and cloacal swabs) for PCR detection of C. botulinum. Between 2013 and 2015, 63 avian botulism suspicions were tested and 37 were confirmed as botulism. Analysis of livers using real-time PCR after enrichment led to the confirmation of 97% of the botulism outbreaks. Using the same method, spleens led to the confirmation of 90% of botulism outbreaks, cloacal swabs of 93% and pooled intestinal contents of 46%. Liver appears to be the most reliable type of matrix for laboratory confirmation using real-time PCR analysis.


Assuntos
Doenças das Aves/diagnóstico , Doenças das Aves/microbiologia , Botulismo/veterinária , Clostridium botulinum/genética , Fígado/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Animais , Camundongos
5.
Appl Environ Microbiol ; 81(7): 2495-505, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25636839

RESUMO

We report the development of real-time PCR assays for genotyping Clostridium botulinum group III targeting the newly defined C. novyi sensu lato group; the nontoxic nonhemagglutinin (NTNH)-encoding gene ntnh; the botulinum neurotoxin (BoNT)-encoding genes bont/C, bont/C/D, bont/D, and bont/D/C; and the flagellin (fliC) gene. The genetic diversity of fliC among C. botulinum group III strains resulted in the definition of five major subgroups named fliC-I to fliC-V. Investigation of fliC subtypes in 560 samples, with various European origins, showed that fliC-I was predominant and found exclusively in samples contaminated by C. botulinum type C/D, fliC-II was rarely detected, no sample was recorded as fliC-III or fliC-V, and only C. botulinum type D/C samples tested positive for fliC-IV. The lack of genetic diversity of the flagellin gene of C. botulinum type C/D would support a clonal spread of type C/D strains in different geographical areas. fliC-I to fliC-III are genetically related (87% to 92% sequence identity), whereas fliC-IV from C. botulinum type D/C is more genetically distant from the other fliC types (with only 50% sequence identity). These findings suggest fliC-I to fliC-III have evolved in a common environment and support a different genetic evolution for fliC-IV. A combination of the C. novyi sensu lato, ntnh, bont, and fliC PCR assays developed in this study allowed better characterization of C. botulinum group III and showed the group to be less genetically diverse than C. botulinum groups I and II, supporting a slow genetic evolution of the strains belonging to C. botulinum group III.


Assuntos
Clostridium botulinum/genética , Clostridium botulinum/isolamento & purificação , Variação Genética , Genótipo , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Animais Domésticos , DNA Bacteriano/química , DNA Bacteriano/genética , Evolução Molecular , Genes Bacterianos , Dados de Sequência Molecular , Análise de Sequência de DNA
6.
Anaerobe ; 36: 25-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432776

RESUMO

Bovine botulism is a sporadic acute disease that usually causes catastrophic losses in the herds. The unusual clinical evolution of a persistent mild outbreak in a dairy herd, prompted us to characterize the neurotoxin gene profile of the strain involved and to evaluate whether seroconversion had occurred. Diagnosis was based on mild classical symptoms and was supported by PCR and bacteriological findings, which revealed the involvement of a non-mosaic type C strain. An in-house ELISA was developed to detect antibodies to botulinum neurotoxin type C and its performance was evaluated in a vaccination study. Fifty days after the index case, fecal and serum samples were collected from the 14 animals of the herd and screened for Clostridium botulinum and anti-botulinum neurotoxin antibodies type C, respectively. The in-house developed ELISA was also used to test 100 sera samples randomly collected from 20 herds. Strong ELISA reactions were observed in 3 convalescent and 5 asymptomatic animals involved in the studied outbreak. The ELISA-positive cows all tested positive for non-mosaic C. botulinum type C in the feces and the same strain was also detected in the alfalfa hay, suspected to be the carrier source. Ten out of the 100 randomly collected sera tested positive for anti-botulinum neurotoxin type C antibodies: 7 had borderline values and 3 from the same herd showed titers three times higher than the cut-off. We concluded that type C botulism in cattle may occur with variable severity and that prolonged exposure to sublethal doses of botulinum neurotoxin C may occur, resulting in detectable antibodies.


Assuntos
Anticorpos Antibacterianos/imunologia , Botulismo/veterinária , Doenças dos Bovinos/imunologia , Clostridium botulinum/imunologia , Imunidade Humoral , Animais , Botulismo/imunologia , Botulismo/microbiologia , Botulismo/fisiopatologia , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/fisiopatologia , Clostridium botulinum/isolamento & purificação , Clostridium botulinum/fisiologia , Fezes/microbiologia , Feminino , Lactação
8.
Trends Microbiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580606

RESUMO

Tailocins are high-molecular-weight bacteriocins produced by bacteria to kill related environmental competitors by binding and puncturing their target. Tailocins are promising alternative antimicrobials, yet the diversity of naturally occurring tailocins is limited. The structural similarities between phage tails and tailocins advocate using phages as scaffolds for developing new tailocins. This article reviews three strategies for producing tailocins: disrupting the capsid-tail junction of phage particles, blocking capsid assembly during phage propagation, and creating headless phage particles synthetically. Particularly appealing is the production of tailocins through synthetic biology using phages with contractile tails as scaffolds to unlock the antimicrobial potential of tailocins.

9.
Appl Environ Microbiol ; 79(13): 3926-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23603687

RESUMO

Botulinum neurotoxins (BoNTs) are produced by phenotypically and genetically different Clostridium species, including Clostridium botulinum and some strains of Clostridium baratii (serotype F) and Clostridium butyricum (serotype E). BoNT-producing clostridia responsible for human botulism encompass strains of group I (secreting proteases, producing toxin serotype A, B, or F, and growing optimally at 37°C) and group II (nonproteolytic, producing toxin serotype E, B, or F, and growing optimally at 30°C). Here we report the development of real-time PCR assays for genotyping C. botulinum strains of groups I and II based on flaVR (variable region sequence of flaA) sequences and the flaB gene. Real-time PCR typing of regions flaVR1 to flaVR10 and flaB was optimized and validated with 62 historical and Canadian C. botulinum strains that had been previously typed. Analysis of 210 isolates of European origin allowed the identification of four new C. botulinum flaVR types (flaVR11 to flaVR14) and one new flaVR type specific to C. butyricum type E (flaVR15). The genetic diversity of the flaVR among C. botulinum strains investigated in the present study reveals the clustering of flaVR types into 5 major subgroups. Subgroups 1, 3, and 4 contain proteolytic Clostridium botulinum, subgroup 2 is made up of nonproteolytic C. botulinum only, and subgroup 5 is specific to C. butyricum type E. The genetic variability of the flagellin genes carried by C. botulinum and the possible association of flaVR types with certain geographical areas make gene profiling of flaVR and flaB promising in molecular surveillance and epidemiology of C. botulinum.


Assuntos
Clostridium botulinum/genética , Flagelina/genética , Variação Genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sequência de Bases , Canadá , Clostridium botulinum/classificação , Análise por Conglomerados , Genótipo , Ensaios de Triagem em Larga Escala , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
10.
Anaerobe ; 22: 31-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23669132

RESUMO

Two real-time PCR arrays based on the GeneDisc(®) cycler platform (Pall-GeneDisc Technologies) were evaluated in a multicenter collaborative trial for their capacity to specifically detect and discriminate Clostridium botulinum types C, D and their mosaic variants C-D and D-C that are associated with avian and mammalian botulism. The GeneDisc(®) arrays developed as part of the DG Home funded European project 'AnibioThreat' were highly sensitive and specific when tested on pure isolates and naturally contaminated samples (mostly clinical specimen from avian origin). Results of the multicenter collaborative trial involving eight laboratories in five European Countries (two laboratories in France, Italy and The Netherlands, one laboratory in Denmark and Sweden), using DNA extracts issued from 33 pure isolates and 48 naturally contaminated samples associated with animal botulism cases, demonstrated the robustness of these tests. Results showed a concordance among the eight laboratories of 99.4%-100% for both arrays. The reproducibility of the tests was high with a relative standard deviation ranging from 1.1% to 7.1%. Considering the high level of agreement achieved between the laboratories these PCR arrays constitute robust and suitable tools for rapid detection of C. botulinum types C, D and mosaic types C-D and D-C. These are the first tests for C. botulinum C and D that have been evaluated in a European multicenter collaborative trial.


Assuntos
Botulismo/diagnóstico , Botulismo/microbiologia , Clostridium botulinum tipo C/classificação , Clostridium botulinum tipo C/genética , Clostridium botulinum tipo D/classificação , Clostridium botulinum tipo D/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Clostridium botulinum tipo C/isolamento & purificação , Clostridium botulinum tipo D/isolamento & purificação , Europa (Continente) , Humanos , Reprodutibilidade dos Testes
11.
Phage (New Rochelle) ; 4(3): 136-140, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37841391

RESUMO

In the light of the worldwide antimicrobial resistance crisis, new substitutes to antibiotics are urgently needed. Tailocins or phage tail-like bacteriocin particles, produced by bacteria for environmental competition, are a potential antimicrobial alternative to antibiotic treatment. Yet, the availability of characterized Tailocins is limited. We explored the possibility to produce new Tailocins from phage particles, using osmotic shock or chemical treatment by the ammonium quaternary compound benzalkonium chloride on Ackermannviridae phage S117 and using Straboviridae phage T4 as control. We report that phage S117 was resistant to such treatment, while successful production of Tailocins by osmotic shock was achieved for phage T4. Finally, chemical treatment with benzalkonium chloride was inefficient on phage S117 but successfully inactivated phage T4 without production of Tailocins. Further studies are needed to implement such treatments of phages for producing Tailocins with killing activity.

12.
Viruses ; 15(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36851545

RESUMO

Bacteriophages, which specifically infect and kill bacteria, are currently used as additives to control pathogens such as Salmonella in human food (PhageGuard S®) or animal feed (SalmoFREE®, Bafasal®). Indeed, salmonellosis is among the most important zoonotic foodborne illnesses. The presence of anti-phage defenses protecting bacteria against phage infection could impair phage applications aiming at reducing the burden of foodborne pathogens such as Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) to the food industry. In this study, the landscape of S. Typhimurium anti-phage defenses was bioinformatically investigated in publicly available genomes using the webserver PADLOC. The primary anti-phage systems identified in S. Typhimurium use nucleic acid degradation and abortive infection mechanisms. Reference systems were identified on an integrative and conjugative element, a transposon, a putative integrative and mobilizable element, and prophages. Additionally, the mobile genetic elements (MGEs) containing a subset of anti-phage systems were found in the Salmonella enterica species. Lastly, the MGEs alone were also identified in the Enterobacteriaceae family. The presented diversity assessment of the anti-phage defenses and investigation of their dissemination through MGEs in S. Typhimurium constitute a first step towards the design of preventive measures against the spread of phage resistance that may hinder phage applications.


Assuntos
Bacteriófagos , Animais , Humanos , Bacteriófagos/genética , Sorogrupo , Salmonella typhimurium/genética , Enterobacteriaceae
13.
Cells ; 12(22)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998371

RESUMO

Due to the extensive use of antibiotics, the increase of infections caused by antibiotic-resistant bacteria is now a global health concern. Phages have proven useful for treating bacterial infections and represent a promising alternative or complement to antibiotic treatment. Yet, other alternatives exist, such as bacteria-produced non-replicative protein complexes that can kill their targeted bacteria by puncturing their membrane (Tailocins). To expand the repertoire of Tailocins available, we suggest a new approach that transforms phages into Tailocins. Here, we genetically engineered the virulent Ackermannviridae phage S117, as well as temperate phages Fels-1, -2 and Gifsy-1 and -2, targeting the food pathogen Salmonella, by deleting the portal vertex or major capsid gene using CRISPR-Cas9. We report the production of Tailocin particles from engineered virulent and temperate phages able to kill their native host. Our work represents a steppingstone that taps into the huge diversity of phages and transforms them into versatile puncturing new antimicrobials.


Assuntos
Anti-Infecciosos , Bacteriófagos , Fagos de Salmonella , Fagos de Salmonella/genética , Bacteriófagos/genética , Antibacterianos/farmacologia , Salmonella , Bactérias
14.
Viruses ; 15(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38140671

RESUMO

Sporulation is a finely regulated morphogenetic program important in the ecology and epidemiology of Clostridium botulinum. Exogenous elements disrupting sporulation-associated genes contribute to sporulation regulation and introduce diversity in the generally conserved sporulation programs of endospore formers. We identified a novel prophage-like DNA segment, termed the yin element, inserted within yabG, encoding a sporulation-specific cysteine protease, in an environmental isolate of C. botulinum. Bioinformatic analysis revealed that the genetic structure of the yin element resembles previously reported mobile intervening elements associated with sporulation genes. Within a pure C. botulinum culture, we observed two subpopulations of cells with the yin element either integrated into the yabG locus or excised as a circular DNA molecule. The dynamics between the two observed conformations of the yin element was growth-phase dependent and likely mediated by recombination events. The yin element was not required for sporulation by C. botulinum but triggered an earlier entry into sporulation than in a related isolate lacking this element. So far, the yin element has not been found in any other C. botulinum strains or other endospore-forming species. It remains to be demonstrated what kind of competitive edge it provides for C. botulinum survival and persistence.


Assuntos
Clostridium botulinum , Clostridium botulinum/genética , Prófagos/genética , Proteínas de Bactérias/genética
15.
Appl Environ Microbiol ; 78(9): 3120-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22344654

RESUMO

Clostridium botulinum types C and D, as well as their mosaic variants C-D and D-C, are associated with avian and mammalian botulism. This study reports on the development of low-density macroarrays based on the GeneDisc cycler platform (Pall-GeneDisc Technologies) applied to the simultaneous detection of the C. botulinum subtypes C, C-D, D, and D-C. The limit of detection of the PCR assays was 38 fg of total DNA, corresponding to 15 genome copies. Artificially contaminated samples of cecum showed a limit of detection below 50 spores/g. The tests were performed with a large variety of bacterial strains, including C. botulinum types C (n = 12), C-D (n = 29), D (n = 5), and D-C (n = 10), other botulinum neurotoxin (BoNT)-producing Clostridium strains (n = 20), non-BoNT-producing clostridia (n = 20), and other bacterial species (n = 23), and showed a high specificity. These PCR assays were compared to previously published real-time PCRs for the detection of C. botulinum in 292 samples collected from cases of botulism events in four European regions. The majority of the samples originated from wild birds (n = 108), poultry (n = 60), and bovines (n = 56). Among the 292 samples, 144 were positive for either the bont/C-D or the bont/D-C gene by using the GeneDisc arrays. The reliability of the results tallied to 97.94%. Interestingly, only BoNT mosaics, types C-D and D-C, were found in naturally contaminated samples whatever their animal origin and their geographical location. Further investigations should now be performed in order to check that mosaic types dominate in Europe and that acquisition of mosaic types helps in survival or adaptation to particular niche.


Assuntos
Técnicas Bacteriológicas/métodos , Toxinas Botulínicas/análise , Botulismo/diagnóstico , Clostridium botulinum/isolamento & purificação , Variação Genética , Animais , Aves , Toxinas Botulínicas/classificação , Toxinas Botulínicas/genética , Bovinos , Clostridium botulinum/genética , Europa (Continente) , Fezes/microbiologia , Hibridização de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
16.
mBio ; 13(3): e0238421, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35499308

RESUMO

In early life, the immature human gut microbiota is prone to colonization by pathogens that are usually outcompeted by mature microbiota in the adult gut. Colonization and neurotoxin production by a vegetative Clostridium botulinum culture in the gut of an infant can lead to flaccid paralysis, resulting in a clinical outcome known as infant botulism, a potentially life-threatening condition. Beside host factors, little is known of the ecology, colonization, and adaptation of C. botulinum to the gut environment. In our previous report, an infant with intestinal botulism was shown to be colonized by neurotoxigenic C. botulinum culture for 7 months. In an effort to gain ecological and evolutionary insights into this unusually long gut colonization by C. botulinum, we analyzed and compared the genomes of C. botulinum isolates recovered from the infant feces during the course of intoxication and isolates from the infant household dust. A number of observed mutations and genomic alterations pinpointed at phenotypic traits that may have promoted colonization and adaptation to the gut environment and to the host. These traits include motility, quorum-sensing, sporulation, and carbohydrate metabolism. We provide novel perspectives and suggest a tentative model of the pathogenesis of C. botulinum in infant botulism. IMPORTANCE While the clinical aspects of infant botulism and the mode of action of BoNT have been thoroughly investigated, little is known on the pathogenesis and adaptive mechanisms of C. botulinum in the gut. Here, we provide for the first time a comprehensive view on the genomic dynamics and plasticity of C. botulinum over time in a case of infant botulism. The genomic and phenotypic analysis of C. botulinum isolates collected during the disease course offers an unprecedented view of C. botulinum ecology, evolution, and pathogenesis and may be instrumental in developing novel strategies for prevention and treatment of toxicoinfectious botulism.


Assuntos
Botulismo , Clostridium botulinum , Microbioma Gastrointestinal , Botulismo/etiologia , Clostridium botulinum/genética , Fezes , Genômica , Humanos , Lactente
17.
Front Microbiol ; 13: 1099184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687640

RESUMO

Clostridium botulinum is the main causative agent of botulism, a neurological disease encountered in humans as well as animals. Nine types of botulinum neurotoxins (BoNTs) have been described so far. Amongst these "toxinotypes," the A, the B and E are the most frequently encountered in humans while the C, D, C/D and D/C are mostly affecting domestic and wild birds as well as cattle. In France for instance, many cases and outbreaks are reported in these animal species every year. However, underestimation is very likely at least for avifauna species where the detection of dead animals can be challenging. Knowledge about BoNTs C, D, C/D, and D/C and the diseases they cause in animals and humans is still scarce and unclear. Specifically, the potential role of animal botulism outbreaks in cattle and poultry as a source of human illness needs to be further assessed. In this narrative review, we present the current knowledge about toxinotypes C, D, C/D, and D/C in cattle and poultry with, amongst various other aspects, their epidemiological cycles. We also discuss the zoonotic potential of these toxinotypes and some possible ways of risk mitigation. An adapted and effective management of botulism outbreaks in livestock also requires a better understanding of these less common and known toxinotypes.

18.
Comput Struct Biotechnol J ; 19: 4854-4867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527194

RESUMO

Phages belonging to the Ackermannviridae family encode up to four tail spike proteins (TSPs), each recognizing a specific receptor of their bacterial hosts. Here, we determined the TSPs diversity of 99 Ackermannviridae phages by performing a comprehensive in silico analysis. Based on sequence diversity, we assigned all TSPs into distinctive subtypes of TSP1, TSP2, TSP3 and TSP4, and found each TSP subtype to be specifically associated with the genera (Kuttervirus, Agtrevirus, Limestonevirus, Taipeivirus) of the Ackermannviridae family. Further analysis showed that the N-terminal XD1 and XD2 domains in TSP2 and TSP4, hinging the four TSPs together, are preserved. In contrast, the C-terminal receptor binding modules were only conserved within TSP subtypes, except for some Kuttervirus TSP1s and TSP3s that were similar to specific TSP4s. A conserved motif in TSP1, TSP3 and TSP4 of Kuttervirus phages may allow recombination between receptor binding modules, thus altering host recognition. The receptors for numerous uncharacterized phages expressing TSPs in the same subtypes were predicted using previous host range data. To validate our predictions, we experimentally determined the host recognition of three of the four TSPs expressed by kuttervirus S117. We confirmed that S117 TSP1 and TSP2 bind to their predicted host receptors, and identified the receptor for TSP3, which is shared by 51 other Kuttervirus phages. Kuttervirus phages were thus shown encode a vast genetic diversity of potentially exchangeable TSPs influencing host recognition. Overall, our study demonstrates that comprehensive in silico and host range analysis of TSPs can predict host recognition of Ackermannviridae phages.

19.
Front Microbiol ; 12: 711413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589070

RESUMO

Classified as the genospecies Clostridium novyi sensu lato and distributed into four lineages (I-IV), Clostridium botulinum (group III), Clostridium novyi, and Clostridium haemolyticum are clostridial pathogens that cause animal diseases. Clostridium novyi sensu lato contains a large mobilome consisting of plasmids and circular bacteriophages. Here, we explored clustered regularly interspaced short palindromic repeats (CRISPR) arrays and their associated proteins (Cas) to shed light on the link between evolution of CRISPR-Cas systems and the plasmid and phage composition in a study of 58 Clostridium novyi sensu lato genomes. In 55 of these genomes, types I-B (complete or partial), I-D, II-C, III-B, III-D, or V-U CRISPR-Cas systems were detected in chromosomes as well as in mobile genetic elements (MGEs). Type I-B predominated (67.2%) and was the only CRISPR type detected in the Ia, III, and IV genomic lineages. Putative type V-U CRISPR Cas14a genes were detected in two different cases: next to partial type-IB CRISPR loci on the phage encoding the botulinum neurotoxin (BoNT) in lineage Ia and in 12 lineage II genomes, as part of a putative integrative element related to a phage-inducible chromosomal island (PICI). In the putative PICI, Cas14a was associated with CRISPR arrays and restriction modification (RM) systems as part of an accessory locus. This is the first time a PICI containing such locus has been detected in C. botulinum. Mobilome composition and dynamics were also investigated based on the contents of the CRISPR arrays and the study of spacers. A large proportion of identified protospacers (20.2%) originated from Clostridium novyi sensu lato (p1_Cst, p4_BKT015925, p6_Cst, CWou-2020a, p1_BKT015925, and p2_BKT015925), confirming active exchanges within this genospecies and the key importance of specific MGEs in Clostridium novyi sensu lato.

20.
Microbiol Resour Announc ; 10(22): e0136420, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34080898

RESUMO

Clostridium botulinum group III is the anaerobic Gram-positive bacterium producing the deadly neurotoxin responsible for animal botulism. Here, we used long-read sequencing to produce four complete genomes from Clostridium botulinum group III neurotoxin types C, D, C/D, and D/C. The protocol for obtaining high-molecular-weight DNA from C. botulinum group III is described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA