Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 23(14): 4013-25, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25737085

RESUMO

Structure-affinity relationship (SAR) and structure-kinetics relationship (SKR) studies were combined to investigate a series of biphenyl anthranilic acid agonists for the HCA2 receptor. In total, 27 compounds were synthesized and twelve of them showed higher affinity than nicotinic acid. Two compounds, 6g (IC50=75nM) and 6z (IC50=108nM) showed a longer residence time profile compared to nicotinic acid, exemplified by their kinetic rate index (KRI) values of 1.31 and 1.23, respectively. The SAR study resulted in the novel 2-F, 4-OH derivative (6x) with an IC50 value of 23nM as the highest affinity HCA2 agonist of the biphenyl series, although it showed a similar residence time as nicotinic acid. The SAR and SKR data suggest that an early compound selection based on binding kinetics is a promising addition to the lead optimization process.


Assuntos
Agonistas Nicotínicos/química , Receptores Acoplados a Proteínas G/agonistas , Relação Estrutura-Atividade , ortoaminobenzoatos/química , Ligação Competitiva , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Cinética , Niacina/metabolismo , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo
2.
Nat Commun ; 15(1): 4310, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773068

RESUMO

Oligoclonal mixtures of broadly-neutralizing antibodies can neutralize complex compositions of similar and dissimilar antigens, making them versatile tools for the treatment of e.g., infectious diseases and animal envenomations. However, these biotherapeutics are complicated to develop due to their complex nature. In this work, we describe the application of various strategies for the discovery of cross-neutralizing nanobodies against key toxins in coral snake venoms using phage display technology. We prepare two oligoclonal mixtures of nanobodies and demonstrate their ability to neutralize the lethality induced by two North American coral snake venoms in mice, while individual nanobodies fail to do so. We thus show that an oligoclonal mixture of nanobodies can neutralize the lethality of venoms where the clinical syndrome is caused by more than one toxin family in a murine challenge model. The approaches described may find utility for the development of advanced biotherapeutics against snakebite envenomation and other pathologies where multi-epitope targeting is beneficial.


Assuntos
Anticorpos Neutralizantes , Cobras Corais , Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/imunologia , Camundongos , Anticorpos Neutralizantes/imunologia , Cobras Corais/imunologia , Modelos Animais de Doenças , Antivenenos/imunologia , Venenos Elapídicos/imunologia , Feminino , Mordeduras de Serpentes/imunologia , Mordeduras de Serpentes/terapia , Epitopos/imunologia , Camundongos Endogâmicos BALB C , Técnicas de Visualização da Superfície Celular
3.
Fluids Barriers CNS ; 19(1): 79, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192747

RESUMO

BACKGROUND: The blood brain barrier (BBB) limits the therapeutic perspective for central nervous system (CNS) disorders. Previously we found an anti-mouse transferrin receptor (TfR) VHH (Nb62) that was able to deliver a biologically active neuropeptide into the CNS in mice. Here, we aimed to test its potential to shuttle a therapeutic relevant cargo. Since this VHH could not recognize the human TfR and hence its translational potential is limited, we also aimed to find and validate an anti-human transferrin VHH to deliver a therapeutic cargo into the CNS. METHODS: Alpaca immunizations with human TfR, and subsequent phage selection and screening for human TfR binding VHHs was performed to find a human TfR specific VHH (Nb188). Its ability to cross the BBB was determined by fusing it to neurotensin, a neuropeptide that reduces body temperature when present in the CNS but is not able to cross the BBB on its own. Next, the anti-ß-secretase 1 (BACE1) 1A11 Fab and Nb62 or Nb188 were fused to an Fc domain to generate heterodimeric antibodies (1A11AM-Nb62 and 1A11AM-Nb188). These were then administered intravenously in wild-type mice and in mice in which the murine apical domain of the TfR was replaced by the human apical domain (hAPI KI). Pharmacokinetic and pharmacodynamic (PK/PD) studies were performed to assess the concentration of the heterodimeric antibodies in the brain over time and the ability to inhibit brain-specific BACE1 by analysing the brain levels of Aß1-40. RESULTS: Selections and screening of a phage library resulted in the discovery of an anti-human TfR VHH (Nb188). Fusion of Nb188 to neurotensin induced hypothermia after intravenous injections in hAPI KI mice. In addition, systemic administration 1A11AM-Nb62 and 1A11AM-Nb188 fusions were able to reduce Aß1-40 levels in the brain whereas 1A11AM fused to an irrelevant VHH did not. A PK/PD experiment showed that this effect could last for 3 days. CONCLUSION: We have discovered an anti-human TfR specific VHH that is able to reach the CNS when administered systemically. In addition, both the currently discovered anti-human TfR VHH and the previously identified mouse-specific anti-TfR VHH, are both able to shuttle a therapeutically relevant cargo into the CNS. We suggest the mouse-specific VHH as a valuable research tool in mice and the human-specific VHH as a moiety to enhance the delivery efficiency of therapeutics into the CNS in human patients.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Animais , Anticorpos/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Barreira Hematoencefálica/metabolismo , Humanos , Camundongos , Neurotensina , Receptores da Transferrina , Transferrina/metabolismo
4.
Drug Discov Today ; 27(8): 2151-2169, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35550436

RESUMO

Phage display technology can be used for the discovery of antibodies for research, diagnostic, and therapeutic purposes. In this review, we present and discuss key parameters that can be optimized when performing phage display selection campaigns, including the use of different antibody formats and advanced strategies for antigen presentation, such as immobilization, liposomes, nanodiscs, virus-like particles, and whole cells. Furthermore, we provide insights into selection strategies that can be used for the discovery of antibodies with complex binding requirements, such as targeting a specific epitope, cross-reactivity, or pH-dependent binding. Lastly, we provide a description of specialized phage display libraries for the discovery of bispecific antibodies and pH-sensitive antibodies. Together, these methods can be used to improve antibody discovery campaigns against all types of antigens.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Anticorpos , Bacteriófagos/genética , Epitopos , Tecnologia
5.
Gigascience ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36509548

RESUMO

Venomous snakes are important parts of the ecosystem, and their behavior and evolution have been shaped by their surrounding environments over the eons. This is reflected in their venoms, which are typically highly adapted for their biological niche, including their diet and defense mechanisms for deterring predators. Sub-Saharan Africa is rich in venomous snake species, of which many are dangerous to humans due to the high toxicity of their venoms and their ability to effectively deliver large amounts of venom into their victims via their bite. In this study, the venoms of 26 of sub-Saharan Africa's medically most relevant elapid and viper species were subjected to parallelized toxicovenomics analysis. The analysis included venom proteomics and in vitro functional characterization of whole venom toxicities, enabling a robust comparison of venom profiles between species. The data presented here corroborate previous studies and provide biochemical details for the clinical manifestations observed in envenomings by the 26 snake species. Moreover, two new venom proteomes (Naja anchietae and Echis leucogaster) are presented here for the first time. Combined, the presented data can help shine light on snake venom evolutionary trends and possibly be used to further improve or develop novel antivenoms.


Assuntos
Elapidae , Proteômica , Animais , Humanos , Ecossistema , Antivenenos/química , África Subsaariana
6.
EMBO Mol Med ; 14(4): e09824, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35352880

RESUMO

Single domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood-brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS. As a proof-of-concept, we explored the potential of AAV-delivered VHH to inhibit BACE1, a well-characterized target in Alzheimer's disease. First, we generated a panel of VHHs targeting BACE1, one of which, VHH-B9, shows high selectivity for BACE1 and efficacy in lowering BACE1 activity in vitro. We further demonstrate that a single systemic dose of AAV-VHH-B9 produces positive long-term (12 months plus) effects on amyloid load, neuroinflammation, synaptic function, and cognitive performance, in the AppNL-G-F Alzheimer's mouse model. These results constitute a novel therapeutic approach for neurodegenerative diseases, which is applicable to a range of CNS disease targets.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Anticorpos de Domínio Único , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/imunologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/imunologia , Ácido Aspártico Endopeptidases/metabolismo , Barreira Hematoencefálica , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/uso terapêutico , Camundongos , Camundongos Transgênicos
7.
Anal Chim Acta ; 1178: 338803, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482878

RESUMO

The use of biologics in the therapeutic landscape has increased exponentially since the last 3 decades. Nevertheless, patients with central nervous system (CNS) related disorders could not yet benefit from this revolution because the blood-brain barrier (BBB) severely hampers biologics from entering the brain. Considerable effort has been put into generating methods to modulate or circumvent the BBB for delivery of therapeutics to the CNS. A promising strategy is receptor-mediated transcytosis (RMT). Recently, Wouters et al. (2020) discovered a mouse anti-transferrin receptor nanobody that is able to deliver a biologically active peptide to the brain via RMT. The present study aims to sample a derivative of this brain-penetrating nanobody (Nb105) in the CNS. Therefore, we compared the applicability of cerebral open flow microperfusion (cOFM) and microdialysis as sampling techniques to directly obtain high molecular weight substances from the cerebral interstitial fluid. A custom AlphaScreen™ assay was validated to quantify nanobody concentrations in the samples. In vitro microdialysis probe (AtmosLM™, 1 MDa cut-off) recovery by gain and by loss for Nb105 was 18.3 ± 3.2% and 27.0 ± 2.5% respectively, whereas for cOFM it was 87.2 ± 4.0% and 97.3 ± 1.6%. Although a large difference in in vitro recovery is observed between cOFM and microdialysis, in vivo similar results were obtained. Immunohistochemical stainings showed an astrocytic and microglial reaction in the immediate vicinity along the implantation track for both probe types. Coronal sections showed higher fluorescein isothiocyanate-dextran and immunoglobulin G extravasation around the microdialysis probe track than after cOFM sampling experiments, however this leakage was clearly limited compared to a positive control where the BBB was disrupted. This is the first study that samples a bispecific nanobody in the brain's interstitial fluid in function of time, providing a pharmacokinetic profile of nanobodies in the CNS. Furthermore, this is the first time a cOFM study is performed in awake freely moving mice, providing data on inflammation and blood-brain barrier integrity in the mouse brain. Overall, this work demonstrates that, while taking into account the (bio)analytical considerations, both microdialysis and cOFM are suitable in vivo sampling techniques for quantification of nanobodies in the CNS.


Assuntos
Barreira Hematoencefálica , Encéfalo , Animais , Transporte Biológico , Líquido Extracelular , Humanos , Camundongos , Microdiálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA