Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
PLoS Genet ; 14(10): e1007580, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30312316

RESUMO

Cattle and other ruminants produce large quantities of methane (~110 million metric tonnes per annum), which is a potent greenhouse gas affecting global climate change. Methane (CH4) is a natural by-product of gastro-enteric microbial fermentation of feedstuffs in the rumen and contributes to 6% of total CH4 emissions from anthropogenic-related sources. The extent to which the host genome and rumen microbiome influence CH4 emission is not yet well known. This study confirms individual variation in CH4 production was influenced by individual host (cow) genotype, as well as the host's rumen microbiome composition. Abundance of a small proportion of bacteria and archaea taxa were influenced to a limited extent by the host's genotype and certain taxa were associated with CH4 emissions. However, the cumulative effect of all bacteria and archaea on CH4 production was 13%, the host genetics (heritability) was 21% and the two are largely independent. This study demonstrates variation in CH4 emission is likely not modulated through cow genetic effects on the rumen microbiome. Therefore, the rumen microbiome and cow genome could be targeted independently, by breeding low methane-emitting cows and in parallel, by investigating possible strategies that target changes in the rumen microbiome to reduce CH4 emissions in the cattle industry.


Assuntos
Bovinos/microbiologia , Metano/metabolismo , Microbiota/fisiologia , Leite/química , Rúmen/microbiologia , Animais , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bovinos/classificação , Bovinos/genética , Feminino , Genoma/genética , Genótipo , Interações entre Hospedeiro e Microrganismos/genética , Microbiota/genética , Rúmen/metabolismo
2.
BMC Microbiol ; 19(1): 129, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185894

RESUMO

BACKGROUND: Enteric methane from the ruminant livestock is a significant source in global greenhouse gas emissions, which is mainly generated by the methanogens inhabiting the rumen and cecum. Sika deer (Cervus nippon) not only produces less methane than bovine, but they also harbor a distinct methanogen community. Whereas, knowledge of methanogens colonization in the rumen and cecum of sika deer is relatively still unknown, which could provide more insights to the manipulation of gut microbiota during early life. RESULTS: Here, we examined the development of bacteria and methanogens in the rumen and cecum of juvenile sika deer from birth to post-weaning (1 day, 42 days and 70 days, respectively) based on next generation sequencing. The results showed that the facultative anaerobic bacteria were decreased and the cellulolytic bacteria were increased. However, methanogens established soon after birth thrived through the whole developmental period, indicating a different succession process than bacteria in the GIT, and the limited role of age and dietary change on GIT methanogens. We also found Methanobrevibacter spp. (Mean relative abundance = 44.2%) and Methanocorpusculum spp. (Mean relative abundance = 57.5%) were dominated in the rumen and cecum, respectively. The methanogens also formed specific correlations with bacteria under different niches, suggesting a role of ecology niche on methanogen community. CONCLUSIONS: This study contributes to our knowledge about the microbial succession in GIT of sika deer, that may facilitate the development of targeted strategies to improve GIT function of sika deer.


Assuntos
Bactérias/classificação , Ceco/microbiologia , Cervos/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Rúmen/microbiologia , Fatores Etários , Anaerobiose , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Cervos/microbiologia , Metano/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Appl Microbiol Biotechnol ; 101(13): 5543-5556, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28389712

RESUMO

Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH4) and carbon dioxide (CO2), but also includes other minor gases, such as hydrogen sulfide (H2S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H2S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H2S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H2S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H2S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H2S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H2S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs (Desulfovibrionaceae, Desulfovibrionales, Proteobacteria) were the most highly represented in untreated manure. Intriguingly, the same species-level OTUs with a similar pattern of opposite relative abundance were also found in two other digesters with lower H2S levels in their biogas. Together, our results suggest that elevated H2S production in anaerobic digesters requires the combination of biological and nutritional factors from both untreated manure and digestate.


Assuntos
Bactérias/metabolismo , Sulfeto de Hidrogênio/metabolismo , Esterco/microbiologia , Sulfatos/metabolismo , Anaerobiose , Animais , Bactérias/classificação , Bactérias/genética , Biocombustíveis , Reatores Biológicos , Bovinos , Desulfovibrio/genética , Desulfovibrio/metabolismo , Firmicutes/genética , Firmicutes/metabolismo , Gases/metabolismo , Sulfeto de Hidrogênio/análise , Metano/metabolismo , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Filogenia , RNA Ribossômico 16S
4.
BMC Microbiol ; 16: 78, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27141986

RESUMO

BACKGROUND: Enteric methane from rumen methanogens is responsible for 25.9 % of total methane emissions in the United States. Rumen methanogens also contribute to decreased animal feed efficiency. For methane mitigation strategies to be successful, it is important to establish which factors influence the rumen methanogen community and rumen volatile fatty acids (VFA). In the present study, we used next-generation sequencing to determine if dairy breed and/or days in milk (DIM) (high-fiber periparturient versus high-starch postpartum diets) affect the rumen environment and methanogen community of primiparous Holstein, Jersey, and Holstein-Jersey crossbreeds. RESULTS: When the 16S rRNA gene sequences were processed and assigned to operational taxonomic units (OTU), a core methanogen community was identified, consisting of Methanobrevibacter (Mbr.) smithii, Mbr. thaueri, Mbr. ruminantium, and Mbr. millerae. The 16S rRNA gene sequence reads clustered at 3 DIM, but not by breed. At 3 DIM, the mean % abundance of Mbr. thaueri was lower in Jerseys (26.9 %) and higher in Holsteins (30.7 %) and Holstein-Jersey crossbreeds (30.3 %) (P < 0.001). The molar concentrations of total VFA were higher at 3 DIM than at 93, 183, and 273 DIM, whereas the molar proportions of propionate were increased at 3 and 93 DIM, relative to 183 and 273 DIM. Rumen methanogen densities, distributions of the Mbr. species, and VFA molar proportions did not differ by breed. CONCLUSIONS: The data from the present study suggest that a core methanogen community is present among dairy breeds, through out a lactation. Furthermore, the methanogen communities were more influenced by DIM and the breed by DIM interactions than breed differences.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Methanobacteriaceae/classificação , Methanobacteriaceae/isolamento & purificação , Rúmen/microbiologia , Análise de Sequência de DNA/métodos , Ração Animal , Animais , Bovinos , Análise por Conglomerados , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos Voláteis/metabolismo , Feminino , Lactação , Methanobacteriaceae/genética , Período Periparto , Período Pós-Parto , RNA Ribossômico 16S/genética , Rúmen/metabolismo
5.
Microb Ecol ; 69(3): 577-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25351144

RESUMO

Although the rumen microbiome of domesticated ruminants has been evaluated, few studies have explored the rumen microbiome of wild ruminants, and no studies have identified the rumen microbiome in the impala (Aepyceros melampus melampus). In the present study, next-generation sequencing and real-time polymerase chain reaction were used to investigate the diversity and density of the bacteria and methanogenic archaea residing in the rumen of five adult male impalas, culled during the winter dry season in Pongola, South Africa. A total of 15,323 bacterial 16S rRNA gene sequences (from five impala), representing 3,892 different phylotypes, were assigned to 1,902 operational taxonomic units (OTUs). A total of 20,124 methanogen 16S rRNA gene sequence reads (from four impala), of which 5,028 were unique, were assigned to 344 OTUs. From the total sequence reads, Bacteroidetes, Proteobacteria, and Firmicutes were the most abundant bacterial phyla. While the majority of the bacterial genera found were unclassified, Prevotella and Cupriavidus were the most abundant classified genera. For methanogens, the genera Methanobrevibacter and Methanosphaera represented 94.3% and 4.0% of the classified sequences, respectively. Most notable was the identification of Methanobrevibacter thaueri-like 16S rRNA gene sequence reads in all four impala samples, representing greater than 30% of each individual's total sequences. Both data sets are accessible through NCBI's Sequence Read Archive (SRA), under study accession number SRP [048619]. The densities of bacteria (1.26 × 10(10)-3.82 × 10(10) cells/ml whole rumen contents) and methanogens (4.48 × 10(8)-7.2 × 10(9) cells/ml of whole rumen contents) from five individual impala were similar to those typically observed in domesticated ruminants.


Assuntos
Antílopes/microbiologia , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Animais , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Masculino , Dados de Sequência Molecular , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rúmen/microbiologia , África do Sul
6.
Microb Ecol ; 69(2): 307-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25252928

RESUMO

Sika deer (Cervus nippon) rely on microorganisms living in the rumen to convert plant materials into chemical compounds, such as volatile fatty acids (VFAs), but how the rumen bacterial community is affected by different forages and adapt to altered diets remains poorly understood. The present study used 454-pyrosequencing of bacterial 16S ribosomal RNA (rRNA) genes to examine the relationship between rumen bacterial diversity and metabolic phenotypes using three sika deer in a 3 × 3 latin square design. Three sika deer were fed oak leaves (OL), corn stover (CS), or corn silage (CI), respectively. After a 7-day feeding period, when compared to the CS and CI groups, the OL group had a lower proportion of Prevotella spp. and a higher proportion of unclassified bacteria belonging to the families Succinivibrionaceae and Paraprevotellaceae (P<0.05). Meanwhile, the concentration of isobutyrate was significantly lower (P<0.05) in the OL group than in the CS and CI groups. There was no significant change of dominant bacterial genera in the OL group after 28 days of feeding. Conversely, total volatile fatty acids (TVFAs) showed an increase after 28 days of feeding, mainly due to the increasing of acetate, propionate, and valerate (P<0.05). The interplay between bacteria and metabolism in the OL group differed from that in the CS and CI groups, especially for the interaction of TVFAs and acetate/propionate. Overall, the current study suggested that Prevotella spp. played critical roles in the fermentation of feed in the rumen of sika deer. However, the differences in interplay patterns between rumen bacterial community composition and metabolic phenotypes were altered in the native and domesticated diets indicating the changed fermentation patterns in the rumen of sika deer.


Assuntos
Bactérias/classificação , Cervos/microbiologia , Dieta/veterinária , Fermentação , Rúmen/microbiologia , Ração Animal/análise , Animais , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Cervos/metabolismo , Digestão , Ácidos Graxos Voláteis/análise , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Silagem/análise , Zea mays/química
7.
Appl Microbiol Biotechnol ; 99(24): 10627-38, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318448

RESUMO

Dietary starch that escapes digestion in the small intestine may serve as a carbon source for bacterial fermentation in the distal intestine. This study aimed to compare the bacterial community in the ileal and cecal digesta of growing pigs fed diets with low (0.14, LR pigs) and high (0.43, HR pigs) amylose/amylopectin ratio. Pyrosequencing based on MiSeq 2000 platform showed that in ileum digesta, Bacteroidetes of LR pigs was markedly higher than that in HR pigs (P < 0.05). Megasphaera and Prevotella were the two most predominant genera in LR pigs, and Prevotella was significantly higher in LR pigs than in HR pigs (P < 0.05). Prevotella was predominant in cecal samples from both LR and HR pigs, although no significant differences were found between the two groups. In the ileum, Megasphaera elsdenii and Mitsuokella multacida were significantly (P < 0.01) higher in LR pigs along with an increase of acetate and butyrate concentrations. Halomonas pacifica, Escherichia fergusonii, and Actinobacillus minor which belong to class Gammaproteobacteria were significantly lower (P < 0.01) in HR pigs with a significant increase (P < 0.01) of Lactobacillus acetotolerans-like bacteria. Therefore, the changed bacterial community may lead to a transformation of microbial function, such as the alteration of fermentation mode which is showed on the change of microbial metabolites like the concentration of short-chain fatty acids (SCFAs), to a response to the switch of dietary composition, and in turn, to help host absorb and utilize nutrients efficiently. The increase of dietary amylose induced the reduction of conditioned pathogens which may probably be due to the increase of some probiotics such as Lactobacillus, thus reducing the risk of intestinal disease.


Assuntos
Amilopectina/administração & dosagem , Amilose/administração & dosagem , Biota/efeitos dos fármacos , Ceco/microbiologia , Dieta/métodos , Íleo/microbiologia , Animais , Análise por Conglomerados , Citosol/química , Ácidos Graxos/análise , Filogenia , Análise de Sequência de DNA , Suínos
8.
Appl Environ Microbiol ; 80(17): 5515-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973070

RESUMO

Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen.


Assuntos
Cilióforos/genética , Primers do DNA/genética , DNA de Protozoário/genética , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 18S/genética , Análise de Sequência de DNA/métodos , Alaska , Animais , Biodiversidade , Cilióforos/isolamento & purificação , DNA de Protozoário/química , DNA Ribossômico/química , DNA Ribossômico/genética , Rúmen/parasitologia , Ruminantes/parasitologia
9.
Appl Microbiol Biotechnol ; 98(6): 2709-17, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24085391

RESUMO

While the use of anaerobic digestion to generate methane as a source of bioenergy is increasing worldwide, our knowledge of the microbial communities that perform biomethanation is very limited. Using next-generation sequencing, bacterial population profiles were determined in three full-scale mesophilic anaerobic digesters operated on dairy farms in the state of Vermont (USA). To our knowledge, this is the first report of a metagenomic analysis on the bacterial population of anaerobic digesters using dairy manure as their main substrate. A total of 20,366 non-chimeric sequence reads, covering the V1-V2 hypervariable regions of the bacterial 16S rRNA gene, were assigned to 2,176 operational taxonomic units (OTUs) at a genetic distance cutoff value of 5 %. Based on their limited sequence identity to validly characterized species, the majority of OTUs identified in our study likely represented novel bacterial species. Using a naïve Bayesian classifier, 1,624 anaerobic digester OTUs could be assigned to 16 bacterial phyla, while 552 OTUs could not be classified and may belong to novel bacterial taxonomic groups that have yet to be described. Firmicutes, Bacteroidetes, and Chloroflexi were the most highly represented bacteria overall, with Bacteroidetes and Chloroflexi showing the least and the most variation in abundance between digesters, respectively. All digesters shared 132 OTUs, which as a "core" group represented 65.4 to 70.6 % of sequences in individual digesters. Our results show that bacterial populations from microbial communities of anaerobic manure digesters can display high levels of diversity despite sharing a common core substrate.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Esterco/microbiologia , Metagenômica , Anaerobiose , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vermont
10.
Curr Microbiol ; 69(6): 809-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25030226

RESUMO

The variation in the diversity of methanogens in sediment depths from Sitka stream was studied by constructing a 16S rRNA gene library using methanogen-specific primers and a denaturing gradient gel electrophoresis (DGGE)-based approach. A total of nine different phylotypes from the 16S rRNA library were obtained, and all of them were clustered within the order Methanosarcinales. These nine phylotypes likely represent nine new species and at least 5-6 new genera. Similarly, DGGE analysis revealed an increase in the diversity of methanogens with an increase in sediment depth. These results suggest that Methanosarcinales phylotypes might be the dominant methanogens in the sediment from Sitka stream, and the diversity of methanogens increases as the depth increases. Results of the present study will help in making effective strategies to monitor the dominant methanogen phylotypes and methane emissions in the environment.


Assuntos
Biota , Sedimentos Geológicos/microbiologia , Methanosarcinales/isolamento & purificação , Análise por Conglomerados , República Tcheca , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Rios , Análise de Sequência de DNA
11.
Curr Microbiol ; 68(6): 724-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24509720

RESUMO

Reindeer (Rangifer tarandus tarandus) may include large proportions of lichens in their winter diet. These dietary lichens are rich in phenolic secondary compounds, the most well-known being the antimicrobial usnic acid. Previous studies have shown that reindeer host rumen bacteria resistant to usnic acid and that usnic acid is quickly detoxified in their rumen. In the present study, reindeer (n = 3) were sampled before, during, and after usnic acid supplementation to determine the effect on their rumen microbial ecology. Ad libitum intake of usnic acid averaged up to 278 mg/kg body mass. Population densities of rumen bacteria and methanogenic archaea determined by real-time PCR, ranged from 1.36 × 10(9) to 11.8 × 10(9) and 9.0 × 10(5) to 1.35 × 10(8) cells/g wet weight, respectively, and the two populations did not change significantly during usnic acid supplementation (repeated measures ANOVA) or vary significantly between the rumen liquid and particle fraction (paired t test). Rumen bacterial community structure determined by denaturing gradient gel electrophoresis did not change in response to intake of usnic acid. Firmicutes (38.7 %) and Bacteriodetes (27.4 %) were prevalent among the 16S rRNA gene sequences (n = 62) from the DGGE gels, but representatives of the phyla Verrucomicrobia (14.5 %) and Proteobacteria (1.6 %) were also detected. Rapid detoxification of the usnic acid or resistance to usnic acid may explain why the diversity of the dominant bacterial populations and the bacterial density in the reindeer rumen does not change during usnic acid supplementation.


Assuntos
Anti-Infecciosos/administração & dosagem , Archaea/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Benzofuranos/administração & dosagem , Biota/efeitos dos fármacos , Rúmen/microbiologia , Animais , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Eletroforese em Gel de Gradiente Desnaturante , Suplementos Nutricionais , Dados de Sequência Molecular , Rena , Análise de Sequência de DNA
12.
Comput Struct Biotechnol J ; 23: 1608-1618, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38680874

RESUMO

Antlers are hallmark organ of deer, exhibiting a relatively high growth rate among mammals, and requiring large amounts of nutrients to meet its development. The rumen microbiota plays key roles in nutrient metabolism. However, changes in the microbiota and metabolome in the rumen during antler growth are largely unknown. We investigated rumen microbiota (liquid, solid, ventral epithelium, and dorsal epithelium) and metabolic profiles of sika deer at the early (EG), metaphase (MG) and fast growth (FG) stages. Our data showed greater concentrations of acetate and propionate in the rumens of sika deer from the MG and FG groups than in those of the EG group. However, microbial diversity decreased during antler growth, and was negatively correlated with short-chain fatty acid (SCFA) levels. Prevotella, Ruminococcus, Schaedlerella and Stenotrophomonas were the dominant bacteria in the liquid, solid, ventral epithelium, and dorsal epithelium fractions. The proportions of Stomatobaculum, Succiniclasticum, Comamonas and Anaerotruncus increased significantly in the liquid or dorsal epithelium fractions. Untargeted metabolomics analysis revealed that the metabolites also changed significantly, revealing 237 significantly different metabolites, among which the concentrations of γ-aminobutyrate and creatine increased during antler growth. Arginine and proline metabolism and alanine, aspartate and glutamate metabolism were enhanced. The co-occurrence network results showed that the associations between the rumen microbiota and metabolites different among the three groups. Our results revealed that the different rumen ecological niches were characterized by distinct microbiota compositions, and the production of SCFAs and the metabolism of specific amino acids were significantly changed during antler growth.

13.
BMC Microbiol ; 13: 207, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24228793

RESUMO

BACKGROUND: The white rhinoceros is on the verge of extinction with less than 20,200 animals remaining in the wild. In order to better protect these endangered animals, it is necessary to better understand their digestive physiology and nutritional requirements. The gut microbiota is nutritionally important for herbivorous animals. However, little is known about the microbial diversity in the gastrointestinal tract (GIT) of the white rhinoceros. Methanogen diversity in the GIT may be host species-specific and, or, function-dependent. To assess methanogen diversity in the hindgut of white rhinoceroses, an archaeal 16S rRNA gene clone library was constructed from pooled PCR products obtained from the feces of seven adult animals. RESULTS: Sequence analysis of 153 archaeal 16S rRNA sequences revealed 47 unique phylotypes, which were assigned to seven operational taxonomic units (OTUs 1 to 7). Sequences assigned to OTU-7 (64 out of 153 total sequencs - 42%) and OTU-5 (18%, 27/153) had 96.2% and 95.5% identity to Methanocorpusculum labreanum, respectively, making Methanocorpusculum labreanum the predominant phylotype in these white rhynoceroses. Sequences belonging to OTU-6 (27%, 42/153) were related (97.6%) to Methanobrevibacter smithii. Only 4% of the total sequences (6/153) were assigned to Methanosphaera stadtmanae (OTU-1). Sequences belonging to OTU-2 (4%, 6/153), OTU-3 (3%, 5/153) and OTU-4 (2%, 3/153) were distantly related (87.5 to 88,4%) to Methanomassiliicoccus luminyensis and were considered to be novel species or strains that have yet-to-be cultivated and characterized. CONCLUSION: Phylogenetic analysis indicated that the methanogen species in the hindgut of white rhinoceroses were more similar to those in the hindgut of horses. Our findings may help develop studies on improving the digestibility of forage for sustainable management and better health of these endangered animals.


Assuntos
Archaea/classificação , Archaea/metabolismo , Biodiversidade , Trato Gastrointestinal/microbiologia , Metano/metabolismo , Perissodáctilos/microbiologia , Animais , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
BMC Microbiol ; 13: 151, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23834656

RESUMO

BACKGROUND: Sika deer (Cervus nippon) have different dietary preferences to other ruminants and are tolerant to tannin-rich plants. Because the rumen bacteria in domestic Sika deer have not been comprehensively studied, it is important to investigate its rumen bacterial population in order to understand its gut health and to improve the productivity of domestic Sika deer. RESULTS: The rumen bacterial diversity in domestic Sika deer (Cervus nippon) fed oak leaves- (OL group) and corn stalks-based diets (CS group) were elucidated using 16S rRNA gene libraries and denaturing gradient gel electrophoresis (DGGE). Overall, 239 sequences were examined from the two groups, 139 clones from the OL group were assigned to 57 operational taxonomic units (OTUs) and 100 sequences from the CS group were divided into 50 OTUs. Prevotella-like sequences belonging to the phylum Bacteroidetes were the dominant bacteria in both groups (97.2% OL and 77% CS), and sequences related to Prevotella brevis were present in both groups. However, Prevotella shahii-like, Prevotella veroralis-like, Prevotella albensis-like, and Prevotella salivae-like sequences were abundant in the OL group compared to those in the CS group, while Succinivibrio dextrinosolvens-like and Prevotella ruminicola-like sequences were prevalent in the CS group. PCR-DGGE showed that bacterial communities clustered with respect to diets and the genus Prevotella was the dominant bacteria in the rumen of domestic Sika deer. However, the distribution of genus Prevotella from two groups was apparent. In addition, other fibrolytic bacteria, such as Clostridium populeti and Eubacterium cellulosolvens were found in the rumen of domestic Sika deer. CONCLUSIONS: The rumen of domestic Sika deer harbored unique bacteria which may represent novel species. The bacterial composition appeared to be affected by diet, and sequences related to Prevotella spp. may represent new species that may be related to the degradation of fiber biomass or tannins. Moreover, the mechanism and biological functions of Prevotella spp. in the rumen ecosystem, and synergistic interactions with other microorganisms should be noticed.


Assuntos
Bactérias/classificação , Biota , Dieta/métodos , Fibras na Dieta/administração & dosagem , Rúmen/microbiologia , Ruminantes/microbiologia , Taninos/administração & dosagem , Animais , Bactérias/genética , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
J Eukaryot Microbiol ; 60(4): 335-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23590673

RESUMO

There are over 100 species in the Order Clevelandellida distributed in many hosts. The majority is assigned to one of the five families, the Nyctotheridae. Our knowledge of clevelandellid genetic diversity is limited to species of Nyctotherus and Nyctotheroides. To increase our understanding of clevelandellid genetic diversity, species were isolated from intestines of the Australian wood-feeding roach Panesthia cribrata Saussure, 1864 from August to October, 2008. Four morphospecies, similar to those reported in Java and Japan by Kidder [Parasitologica, 29:163-205], were identified: Clevelandella constricta, Clevelandella nipponensis, Clevelandella parapanesthiae, and Clevelandella panesthiae. Small subunit rRNA gene sequences assigned all species to a "family" clade that was sister to the clade of species assigned to the Family Nyctotheridae in the Order Clevelandellida. Genetics and morphology were consistent for the first three Clevelandella species, but isolates assigned to C. panesthiae were assignable to three different genotypes, suggesting that this may be a cryptic species complex.


Assuntos
Biodiversidade , Cilióforos/genética , Cilióforos/fisiologia , Baratas/microbiologia , Filogenia , Madeira , Animais , Cilióforos/classificação , Variação Genética , Simbiose/genética , Simbiose/fisiologia
16.
Microb Ecol ; 66(4): 879-88, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24061342

RESUMO

Understanding the methanogen structure from sika deer (Cervus nippon) in China may be beneficial to methane mitigation. In the present preliminary study, we investigated the methanogen community in the rumen of domesticated sika deer fed either tannin-rich plants (oak leaf, OL group) or corn stalk (CS group) using 16S rRNA gene clone libraries. Overall, we obtained 197 clone sequences, revealing 146 unique phylotypes, which were assigned to 36 operational taxonomic units at the species level (98 % identity). Methanogens related to the genus Methanobrevibacter were the predominant phylotypes representing 83.9 % (OL library) and 85.9 % (CS library) of the clones. Methanobrevibacter millerae was the most abundant species in both libraries, but the proportion of M. millerae-related clones in the CS library was higher than in the OL library (69.5 and 51.4 %, respectively). Moreover, Methanobrevibacter wolinii-related clones (32.5 %) were predominant in the OL library. Methanobrevibacter smithii-related clones and Methanobrevibacter ruminantium-related clones accounted for 6.5 and 6.6 % in the CS library, respectively. However, these clones were absent from the OL library. The concentrations of butyrate and total short-chain fatty acids (SCFAs) were significantly higher in the OL group, but the concentrations of acetate, propionate, and valerate and the acetate to propionate ratio in the OL group were not significantly different between the two groups. Tannin-rich plants may have affected the distribution of genus Methanobrevibacter phylotypes at the species level and the concentration and composition of SCFAs.


Assuntos
Ração Animal/análise , Bactérias/isolamento & purificação , Cervos/microbiologia , Metano/metabolismo , Rúmen/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , China , Cervos/metabolismo , Masculino , Dados de Sequência Molecular , Filogenia
17.
Mol Biol Rep ; 40(1): 369-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23065252

RESUMO

We investigated the community structure of bacteria that populate the stomach of the Brumby, a breed of feral horses from the Australian outback. Using a 16S rRNA gene clone library, we identified 155 clones that were assigned to 26 OTUs based on a 99.0 % sequence identity cutoff. Two OTUs represented 73.5 % of clones, while 18 OTUs were each assigned only a single clone. Four major bacterial types were identified in the Brumby stomach: Lactobacillaceae, Streptococcaceae, Veillonellaceae and Pasteurellaceae. The first three groups, which represented 98.1 % of the Brumby stomach library clones, belonged to the bacterial phylum Firmicutes. We found that 49.7 % of clones were related to bacterial species previously identified in the equine hindgut, and that 44.5 % of clones were related to symbiotic bacterial species identified in the mouth or throat of either horses or other mammals. Our results indicated that the composition of mutualistic bacterial communities of feral horses was consistent with other studies on domestic horses. In addition to bacterial sequences, we also identified four plastid 16S rRNA gene sequences, which may help in further characterizing the type of vegetation consumed by Brumby horses in their natural environment.


Assuntos
Bactérias/classificação , Bactérias/genética , Estômago/microbiologia , Animais , Austrália , Cavalos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S
18.
Poult Sci ; 92(9): 2358-66, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23960118

RESUMO

Research on the interaction between dietary vitamins and intestinal bacteria is poorly understood. To investigate the effect of dietary vitamins on the cecal bacterial communities, 2 bacterial 16S rRNA gene clone libraries were constructed from pooled PCR products obtained from the cecal digesta of 28-d broilers fed diets with vitamins (V) at the NRC level or with no vitamins (NV). The results showed that BW gain and average feed intake of V broilers was significantly higher (P < 0.01) than NV broilers, whereas the feed/gain ratio was significantly lower (P < 0.01) in V broilers. A total of 188 and 185 clones were sequenced for the NV and V broilers, respectively. Sequence identity criterion of 98% was used to assign sequences to operational taxonomic units (OTU). Clones from the NV group broilers were assigned to 14 OTU, with 33% clones affiliated with the genus Clostridium, 19% affiliated with the genera Escherichia/Shigella, 14% affiliated with the genus Bacteroides, and the remaining clones (34%) affiliated with 5 other bacterial genera (Faecalibacterium, Parasporobacterium, Ruminococcus, Streptococcus, and Subdoligranulum). Clones from the V group broilers were assigned to 23 OTU, with 46% of the clones affiliated with the genus Clostridium, 11% affiliated with the genus Fecalibacterium, and the remaining clones (43%) affiliated with 8 other genera (Anaerofilum, Lactobacillus, Anaerotruncus, Oscillibacter, Alistipes, Gracilibacter, Acetivibrio, and Haloplasma). Three OTU assigned to Clostridium, Faecalibacterium, and Ruminoccus were shared between the 2 libraries. Shannon diversity index showed the V broilers exhibited significantly higher bacterial diversity (P = 0.05), and Libshuff analysis indicated that the community structure between the 2 groups was significantly different (P < 0.0001). These results suggest that lack of dietary vitamins can increase the ratio of facultative pathogenic bacteria and decrease the diversity of bacteria in the cecum of broilers. Our results provide new leads for further investigations on the interaction between dietary vitamin additives and the gut health of broilers.


Assuntos
Bactérias/classificação , Bactérias/genética , Ceco/microbiologia , Galinhas/microbiologia , Galinhas/fisiologia , Vitaminas/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , China , Clonagem Molecular , Suplementos Nutricionais/análise , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/veterinária , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de RNA/veterinária , Vitaminas/administração & dosagem
19.
Archaea ; 2012: 605289, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844227

RESUMO

The diversity of fecal methanogens of Erhualian (obese type) and Landrace (lean type) pigs was examined using separate 16S rRNA gene libraries for each breed. A total of 763 clones were analyzed; 381 from the Erhualian library and 382 from the Landrace library were identified belonging to the genus Methanobrevibacter. Others were identified belonging to the genus Methanosphaera. The two libraries showed significant differences in diversity (P < 0.05) and composition (P < 0.0001). Only two operational taxonomic units (OTUs) were found in both libraries, whereas six OTUs were found only in the Erhualian library and 23 OTUs were found only in the Landrace library. Real-time PCR showed that the abundance of fecal methanogens in Landrace pigs was significantly higher than that in Erhualian pigs (P < 0.05). Results showed that the Landrace pig (lean) harbored a greater diversity and higher numbers of methanogen mcrA gene copies than the Erhualian pig (obese). These differences may be related to the fatness or leanness in these two pig breeds. The results provide new leads for further investigations on the fat storage of pigs or even humans.


Assuntos
Fezes/microbiologia , Methanobrevibacter/isolamento & purificação , Suínos/microbiologia , Animais , Sequência de Bases , Contagem de Colônia Microbiana , Escherichia coli/genética , Escherichia coli/metabolismo , Dosagem de Genes , Biblioteca Gênica , Genes Arqueais , Genes de RNAr , Variação Genética , Methanobrevibacter/genética , Methanobrevibacter/metabolismo , Obesidade/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real
20.
Appl Environ Microbiol ; 78(24): 8836-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042173

RESUMO

Foregut digesta from five feral dromedary camels were inoculated into three different enrichment media: cotton thread, filter paper, and neutral detergent fiber. A total of 283 16S rRNA gene sequences were assigned to 33 operational taxonomic units by using 99% species-level identity. LIBSHUFF revealed significant differences in the community composition across all three libraries.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Celulose/metabolismo , Rúmen/microbiologia , Animais , Bactérias/isolamento & purificação , Camelus , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA