Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38185987

RESUMO

Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.


Assuntos
Consolidação da Memória , Córtex Motor , Consolidação da Memória/fisiologia , Vigília , Aprendizagem/fisiologia , Memória de Longo Prazo , Destreza Motora/fisiologia , Córtex Motor/fisiologia
2.
Theor Appl Genet ; 135(9): 3073-3086, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35902398

RESUMO

KEY MESSAGE: Eight soybean genomic regions, including six never before reported, were found to be associated with resistance to soybean rust (Phakopsora pachyrhizi) in the southeastern USA. Soybean rust caused by Phakopsora pachyrhizi is one of the most important foliar diseases of soybean [Glycine max (L.) Merr.]. Although seven Rpp resistance gene loci have been reported, extensive pathotype variation in and among fungal populations increases the importance of identifying additional genes and loci associated with rust resistance. One hundred and ninety-one soybean plant introductions from Japan, Indonesia and Vietnam, and 65 plant introductions from other countries were screened for resistance to P. pachyrhizi under field conditions in the southeastern USA between 2008 and 2015. The results indicated that 84, 69, and 49% of the accessions from southern Japan, Vietnam or central Indonesia, respectively, had negative BLUP values, indicating less disease than the panel mean. A genome-wide association analysis using SoySNP50K Infinium BeadChip data identified eight genomic regions on seven chromosomes associated with SBR resistance, including previously unreported regions of Chromosomes 1, 4, 6, 9, 13, and 15, in addition to the locations of the Rpp3 and Rpp6 loci. The six unreported genomic regions might contain novel Rpp loci. The identification of additional sources of rust resistance and associated genomic regions will further efforts to develop soybean cultivars with broad and durable resistance to soybean rust in the southern USA.


Assuntos
Basidiomycota , Phakopsora pachyrhizi , Genes de Plantas , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Indonésia , Japão , Phakopsora pachyrhizi/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Glycine max/genética , Glycine max/microbiologia , Vietnã
3.
Exerc Sport Sci Rev ; 50(1): 38-48, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669627

RESUMO

We examine the novel hypothesis that physical exercise and sleep have synergistic effects on memory. Exercise can trigger mechanisms that can create an optimal brain state during sleep to facilitate memory processing. The possibility that exercise could counteract the deleterious effects of sleep deprivation on memory by protecting neuroplasticity also is discussed.


Assuntos
Privação do Sono , Sono , Encéfalo , Exercício Físico , Humanos , Memória
4.
Psychol Res ; 86(4): 1310-1331, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34136942

RESUMO

The present study investigated the long-term benefit of Random-Practice (RP) over Blocked-Practice (BP) within the contextual interference (CI) effect for motor learning. We addressed the extent to which motor sequence length and practice amount factors moderate the CI effect given that previous reports, often in applied research, have reported no long-term advantage from RP. Based on predictions arising from the Cognitive framework of Sequential Motor Behavior (C-SMB) and using the Discrete Sequence Production (DSP) task, two experiments were conducted to compare limited and extended practice amounts of 4- and 7-key sequences under RP and BP schedules. Twenty-four-hour delayed retention performance confirmed the C-SMB prediction that the CI-effect occurs only with short sequences that receive little practice. The benefit of RP with limited practice was associated with overnight motor memory consolidation. Further testing with single-stimulus as well as novel and unstructured (i.e., random) sequences indicated that limited practice under RP schedules enhances both reaction and chunking modes of sequence execution with the latter mode benefitting from the development of implicit and explicit forms of sequence representation. In the case of 7-key sequences, extended practice with RP and BP schedules provided for equivalent development of sequence representations. Higher explicit awareness of sequence structures was associated with faster completion of practiced but also of novel and unstructured sequences.


Assuntos
Destreza Motora , Humanos
5.
J Nematol ; 54(1): 20220046, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36457366

RESUMO

Plant-parasitic and free-living nematodes - bacterivores, fungivores, omnivores, predators - comprise the nematode community. Nematicide application and crop rotation are important tools to manage plant-parasitic nematodes, but effects on free-living nematodes and nematode ecological indices need further study. The nematicide fluopyram was recently introduced in cotton (Gossypium hirsutum) production and its effects on the nematode community need assessment. This research was conducted in 2017 and 2018 at a long-term field site in Quincy, FL where perennial grass/sod-based (bahiagrass, Paspalum notatum) and conventional cotton rotations were established in 2000. The objective of this research was to evaluate the effects of fluopyram nematicide, crop rotation phase, and irrigation on free-living nematodes and nematode ecological indices based on three soil sampling dates each season. We did not observe consistent effects of crop rotation phase on free-living nematodes or nematode ecological indices. Only omnivores were consistently negatively impacted by fluopyram. Nematode ecological indices reflected this negative effect by exhibiting a degraded/ stressed environmental condition relative to untreated plots. Free-living nematodes were not negatively impacted by nematicide when sod-based rotation was used.

6.
Neurobiol Learn Mem ; 178: 107365, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33348047

RESUMO

Engagement of primary motor cortex (M1) is important for successful consolidation of motor skills. Recruitment of M1 has been reported to be more extensive during interleaved compared to repetitive practice and this differential recruitment has been proposed to contribute to the long-term retention benefit associated with interleaved practice. The present study administered anodal direct current stimulation (tDCS) during repetitive practice in an attempt to increase M1 activity throughout repetitive practice with the goal to improve the retention performance of individuals exposed to this training format. Fifty-four participants were assigned to one of three experimental groups that included: interleaved-sham, repetitive-sham, and repetitive-anodal tDCS. Real or sham stimulation at M1 was administered during practice of three motor sequences for approximately 20-min. Performance in the absence of any stimulation was evaluated prior to practice, immediately after practice as well as at 6-hr, and 24-h after practice was complete. As expected, for the sham conditions, interleaved as opposed repetitive practice resulted in superior offline gain. This was manifest as more rapid stabilization of performance after 6-h as well as an enhancement in performance with a period of overnight sleep. Administration of anodal stimulation at M1 during repetitive practice improved offline gains assessed at both 6-h and 24-h tests compared to the repetitive practice sham group. These data are consistent with the claims that reduced activation at M1 during repetitive practice impedes offline gain relative to interleaved practice and that M1 plays an important role in early consolidation of novel motor skills even in the context of the simultaneous acquisition of multiple new skills. Moreover, these findings highlight a possible role for M1 during sleep-related consolidation, possibly as part of a network including the dorsal premotor region, which supports delayed performance enhancement.


Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Prática Psicológica , Estimulação Transcraniana por Corrente Contínua , Adulto , Feminino , Humanos , Masculino
7.
Plant Dis ; 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33754865

RESUMO

Diverse field characteristics, weather patterns, and management practices can result in variable microclimates. The objective was to relate in-field microclimate conditions with peanut diseases and yield and determine the effect of irrigation and fungicides within these environments. Irrigation did not have a major impact on disease and yield. Stem rot (Athelia rolfsii) and early (Passalora arachidicola) and late (Nothopassalora personata) leaf spot were most affected by changes in environmental patterns across seasons. Average non-treated stem rot was 12.9% in 2017 which dropped considerably in 2018 to 0.2% but emerged again in 2019 to 3.2%. Stem rot incidence varied across the field, and the response to fungicides depended on management zone. Leaf spot defoliation in non-treated plots was severe in 2019 reaching an average of 73% at 126 days after planting but only reached 15% in 2017 and 35% in 2019 at the same stage. A low-input fungicide schedule was able to reduce foliar disease in all zones and seasons, but the microclimatic conditions in the low-lying area favored leaf spot in 2017 and 2018 although not in the dryer 2019 season. Seasonal differences in disease and plant growth affected the level of protection against average yield loss using a standard low-input program which in 2017 (527 kg/ha) was not as great as 2018 (2,235 kg/ha) or 2019 (1,763 kg/ha). Disease prediction models built on dynamic environmental factors in the context of multiple pathogens and natural field conditions could be developed to improve within-season management decisions for more efficient fungicide inputs.

8.
Exp Brain Res ; 238(5): 1191-1202, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32246187

RESUMO

The purpose of the study was twofold: (1) determine if different time delays (30 min or 6 h) between training and a post-training test with a rhythmic bimanual pattern (90° relative phase) would be associated with different levels of consolidation for the motor and spatial representations of the pattern; and (2) determine if training with the rhythmic bimanual pattern would lead to enhanced corticospinal excitability in M1 linked to changes in motor and spatial performance measures. Coordination accuracy and stability of the 90° pattern improved over practice. Coordination accuracy and stability were the same after a 30-min or 6-h delay between training and the post-training test, indicating equivalent levels of consolidation in the motor representation. The 6-h delay interval resulted in shorter visual recognition times compared to the 30-min delay and was centered on the trained 90° pattern. These findings indicate the consolidation of the spatial representation was more time sensitive compared to the motor representation in the current task. Motor evoked potentials (MEPs) from the first dorsal interosseous muscle (FDI) generated by single-pulse transcranial magnetic stimulation (TMS) were measured at baseline (before training) and at 6-min and 21-min intervals post-training with the 90° pattern. Increased corticospinal excitability in M1 was evidenced by larger MEPs of the FDI muscle at the 6-min interval. This increased excitability after training is a novel finding after training with a difficult and initially unstable rhythmic bimanual pattern. No significant correlations were found between the MEP data and behavioral data; thus, the increased excitability in M1 may have been linked to the difficulty in performing the pattern, consolidation processes, or both.


Assuntos
Potencial Evocado Motor/fisiologia , Mãos/fisiologia , Consolidação da Memória/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Prática Psicológica , Desempenho Psicomotor/fisiologia , Tratos Piramidais/fisiologia , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo , Estimulação Magnética Transcraniana , Adulto Jovem
9.
Exp Brain Res ; 238(1): 29-37, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31758203

RESUMO

Tecchio et al. (J Neurophysiology 104: 1134-1140, 2010) reported that the application of anodal tDCS at primary motor cortex (M1) immediately after practice of a procedural motor skill enhanced consolidation, which in turn improved offline gain. Tecchio et al. noted, however, that this study did not account for known after-effects associated with this form of non-invasive stimulation. The present study was designed to explicitly reevaluate Tecchio et al.'s claim. As in the original study, individuals experienced either anodal or sham stimulation at M1 after practice of a serial reaction time task (SRTT) followed by test trials 15-min later. Two additional novel conditions experienced the test trials after 120-min rather than 15-min thus allowing potential stimulation after-effects to dissipate. The expectation was that if anodal stimulation influences post-practice consolidation leading to offline gain, this effect would be present not only at 15-min but also after 120-min. In agreement with the working hypothesis, findings revealed offline gain at both 15-min and the longer 2-h time period. Unexpectedly, we found no interaction between real and sham conditions. The lack of difference between Real and Sham effects weakens confidence in the potential of post-practice tDCS for consolidation enhancement, while it is more consistent with other claims that decoupling practice and anodal tDCS stimulation in time can reduce the effectiveness of exogenous stimulation for procedural skill gain.


Assuntos
Atividade Motora/fisiologia , Córtex Motor/fisiologia , Prática Psicológica , Desempenho Psicomotor/fisiologia , Aprendizagem Seriada/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Feminino , Humanos , Masculino , Placebos , Adulto Jovem
10.
Plant Dis ; : PDIS03200547RE, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900292

RESUMO

Late and early leaf spot are caused by Nothopassalora personata and Passalora arachidicola, respectively, and are damaging diseases of peanut (Arachis hypogaea L.) capable of defoliation and yield loss. Management of these diseases is most effective through the integration of tactics that reduce starting inoculum and prevent infection. The insecticide phorate was first registered in 1959 and has been used in peanut production for decades in-furrow at planting to suppress thrips. Phorate further provides significant suppression of Tomato spotted wilt virus infection beyond suppression of its thrips vector alone by activating defense-related responses in the peanut plant. From six experiments conducted from 2017 to 2019 in Blackville, SC, Reddick, FL, and Quincy, FL, significantly less leaf spot defoliation was exhibited on peanuts treated with phorate in-furrow at planting (26%) compared with nontreated checks (48%). In-season fungicides were excluded from five of the experiments, whereas the 2018 Quincy, FL, experiment included eight applications on a 15-day interval. Across individual experiments, significant suppression of defoliation caused by late leaf spot was observed from 64 to 147 days after planting. Although more variable within location-years, pod yield following phorate treatment was overall significantly greater than for nontreated peanut (2,330 compared with 2,030 kg/ha; P = 0.0794). The consistent defoliation suppression potential was estimated to confer an average potential net economic yield savings of $90 to $120 per hectare under analogous leaf spot defoliation. To our knowledge, these are the first data in the 61 years since its registration demonstrating significant suppression of leaf spot on peanut following application of phorate in-furrow at planting. Results support phorate use in peanut as an effective and economical tactic to incorporate to manage late and early leaf spot infections and development of fungicide resistance.

11.
Plant Dis ; 104(5): 1390-1399, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32223639

RESUMO

Late and early leaf spot, respectively caused by Nothopassalora personata and Passalora arachidicola, are damaging diseases of peanut (Arachis hypogaea) capable of defoliating canopies and reducing yield. Although one of these diseases may be more predominant in a given area, both are important on a global scale. To assist informed management decisions and quantify relationships between end-of-season defoliation and yield loss, meta-analyses were conducted over 140 datasets meeting established criteria. Slopes of proportion yield loss with increasing defoliation were estimated separately for Virginia and runner market type cultivars. Yield loss for Virginia types was described by an exponential function over the range of defoliation levels, with a loss increase of 1.2 to 2.2% relative to current loss levels per additional percent defoliation. Results for runner market type cultivars showed yield loss to linearly increase 2.2 to 2.8% per 10% increase in defoliation for levels up to approximately 95% defoliation, after which the rate of yield loss was exponential. Defoliation thresholds to prevent economic yield loss for Virginia and runner types were estimated at 40 and 50%, respectively. Although numerous factors remain important in mitigating overall yield losses, the integration of these findings should aid recommendations about digging under varying defoliation intensities and peanut maturities to assist in minimizing yield losses.


Assuntos
Arachis , Ascomicetos , Virginia
12.
J Nematol ; 52: 1-14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298056

RESUMO

Plant-parasitic nematodes (Rotylenchulus reniformis (reniform, RN), Helicotylenchus dihystera (spiral), and Mesocriconema ornatum (ring)) and yield were investigated in cotton phases of conventional (peanut-cotton-cotton) and sod-based (bahiagrass-bahiagrass-peanut-cotton) rotations with or without irrigation and fluopyram nematicide at a long-term research site, established in 2000, in Quincy, Florida, USA. Objectives were to determine impacts of nematicide application on cotton yield and evaluate effects of nematicide on plant-parasitic nematodes in these rotations in 2017 and 2018. Reniform nematode population densities were greater in conventional cotton than sod-based cotton. Ring and spiral nematode population densities were greater in sod-based cotton than conventional cotton. Plots receiving nematicide had increased RN population densities in preplant 2018 soil samples and spiral nematode population densities in preplant 2017, harvest 2017, preplant 2018, and harvest 2018 soil samples compared to untreated plots. Cotton seed yield in conventional rotation was increased by 18% following nematicide application in 2017 but decreased by 10% in sod-based rotation in 2018, relative to the untreated control. Sod-based rotation had greater cotton yield than conventional rotation in 2017 and 2018. Nematicide application did not improve cotton yield in sod-based rotation and was inconsistent in conventional rotation.Plant-parasitic nematodes (Rotylenchulus reniformis (reniform, RN), Helicotylenchus dihystera (spiral), and Mesocriconema ornatum (ring)) and yield were investigated in cotton phases of conventional (peanut­cotton­cotton) and sod-based (bahiagrass­bahiagrass­peanut­cotton) rotations with or without irrigation and fluopyram nematicide at a long-term research site, established in 2000, in Quincy, Florida, USA. Objectives were to determine impacts of nematicide application on cotton yield and evaluate effects of nematicide on plant-parasitic nematodes in these rotations in 2017 and 2018. Reniform nematode population densities were greater in conventional cotton than sod-based cotton. Ring and spiral nematode population densities were greater in sod-based cotton than conventional cotton. Plots receiving nematicide had increased RN population densities in preplant 2018 soil samples and spiral nematode population densities in preplant 2017, harvest 2017, preplant 2018, and harvest 2018 soil samples compared to untreated plots. Cotton seed yield in conventional rotation was increased by 18% following nematicide application in 2017 but decreased by 10% in sod-based rotation in 2018, relative to the untreated control. Sod-based rotation had greater cotton yield than conventional rotation in 2017 and 2018. Nematicide application did not improve cotton yield in sod-based rotation and was inconsistent in conventional rotation.

13.
Exp Brain Res ; 235(6): 1909-1918, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28315944

RESUMO

The influence of monitoring-pressure on the performance of anti-phase and in-phase bimanual coordination was examined. The two bimanual patterns were produced under no-monitoring and monitoring-pressure conditions at self-paced frequencies. Anti-phase coordination was always less stable than in-phase coordination, with or without monitoring. When performed under monitoring-pressure, the coordination patterns were performed with less variability in relative phase for both patterns across a range of self-paced movement frequencies compared to performance without monitoring. Thus, while monitoring-pressure did induce a behavioral change, it consisted of performance stabilization rather than degradation, a finding inconsistent with explicit-monitoring theory. However, the findings are consistent with the theory of coordination dynamics and studies that have revealed increased stability for the system's intrinsic dynamics as a result of attentional focus and intentional control.


Assuntos
Atenção/fisiologia , Função Executiva/fisiologia , Intenção , Desempenho Psicomotor/fisiologia , Adulto , Humanos , Adulto Jovem
14.
Exp Brain Res ; 234(2): 353-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26487177

RESUMO

In order to determine how participants represent practiced, discrete keying sequences in the discrete sequence production task, we had 24 participants practice two six-key sequences on the basis of two pre-learned six-digit numbers. These sequences were carried out by fingers of the left (L) and right (R) hand with between-hand transitions always occurring between the second and third, and the fifth and sixth responses. This yielded the so-called LLRRRL and RRLLLR sequences. Early and late in practice, the keypad used for the right hand was briefly relocated from the front of the participants to 90° at their right side. The results indicate that after 600 practice trials, executing a keying sequence relies heavily on a spatial cross-hand representation in a trunk- or head-based reference frame that after about only 15 trials is fully adjusted to the changed hand location. The hand location effect was not found with the last sequence element. This is attributed to the application of explicit knowledge. The between-hand transitions appeared to induce initial segmentation in some of the participants, but this did not consolidate into a concatenation point of successive motor chunks.


Assuntos
Lateralidade Funcional/fisiologia , Destreza Motora/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Aprendizagem Espacial/fisiologia , Feminino , Mãos/fisiologia , Humanos , Masculino , Movimento/fisiologia , Adulto Jovem
15.
Psychol Res ; 80(4): 518-31, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26115758

RESUMO

The present study examined the efficacy of a short bout of moderately intensive exercise to protect knowledge of a newly acquired motor sequence. Previous work revealed that sleep-dependent offline gains in motor sequence performance are reduced by practicing an alternative motor sequence in close temporal proximity to the original practice with the target motor sequence. In the present work, a brief bout of exercise was inserted at two different temporal locations between practice of a to-be-learned motor sequence and the interfering practice that occurred 2 h later. At issue was whether exposure to exercise could reduce the impact of practice with the interfering task which was expected to be manifest as reemergence of offline gain observed in the case in which the learner is not exposed to the interfering practice. Acute exercise did influence the interfering quality of practice with an alternative motor sequence resulting in the return of broad offline gain. However, this benefit was immediate, emerging on the initial test trial, only when exercise was experienced some time after the original period of motor sequence practice and just prior to practice with the interfering motor sequence. Thus, while exercise can contribute to post-practice consolidation, there appears to be a fragile interplay between spontaneous memory consolidation occurring after task practice and the consolidation processes induced via exercise.


Assuntos
Exercício Físico/fisiologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Prática Psicológica , Humanos , Sono
16.
Exp Brain Res ; 233(12): 3475-88, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26298044

RESUMO

We performed two experiments to determine whether amplified motor output variability and compromised processing of visual information in older adults impair short-term adaptations when learning novel fine motor tasks. In Experiment 1, 12 young and 12 older adults underwent training to learn how to accurately trace a sinusoidal position target with abduction-adduction of their index finger. They performed 48 trials, which included 8 blocks of 6 trials (the last trial of each block was performed without visual feedback). Afterward, subjects received an interference task (watched a movie) for 60 min. We tested retention by asking subjects to perform the sinusoidal task (5 trials) with and without visual feedback. In Experiment 2, 12 young and 10 older adults traced the same sinusoidal position target with their index finger and ankle at three distinct visual angles (0.25°, 1° and 5.4°). In Experiment 1, the movement error and variability were greater for older adults during the visual feedback trials when compared with young adults. In contrast, during the no-vision trials, age-associated differences in movement error and variability were ameliorated. Short-term adaptations in learning the sinusoidal task were similar for young and older adults. In Experiment 2, lower amount of visual feedback minimized the age-associated differences in movement variability for both the index finger and ankle movements. We demonstrate that although short-term adaptations are similar for young and older adults, older adults do not process visual information as well as young adults and that compromises their ability to control novel fine motor tasks during acquisition, which could influence long-term retention and transfer.


Assuntos
Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , Retroalimentação Sensorial/fisiologia , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Tornozelo , Feminino , Dedos , Humanos , Masculino , Adulto Jovem
17.
Phytopathology ; 105(7): 905-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25775102

RESUMO

The pathogen causing soybean rust, Phakopsora pachyrhizi, was first described in Japan in 1902. The disease was important in the Eastern Hemisphere for many decades before the fungus was reported in Hawaii in 1994, which was followed by reports from countries in Africa and South America. In 2004, P. pachyrhizi was confirmed in Louisiana, making it the first report in the continental United States. Based on yield losses from countries in Asia, Africa, and South America, it was clear that this pathogen could have a major economic impact on the yield of 30 million ha of soybean in the United States. The response by agencies within the United States Department of Agriculture, industry, soybean check-off boards, and universities was immediate and complex. The impacts of some of these activities are detailed in this review. The net result has been that the once dreaded disease, which caused substantial losses in other parts of the world, is now better understood and effectively managed in the United States. The disease continues to be monitored yearly for changes in spatial and temporal distribution so that soybean growers can continue to benefit by knowing where soybean rust is occurring during the growing season.


Assuntos
Glycine max/microbiologia , Phakopsora pachyrhizi/fisiologia , Interações Hospedeiro-Patógeno , América do Norte , Controle de Pragas , Phakopsora pachyrhizi/classificação , Phakopsora pachyrhizi/patogenicidade , Doenças das Plantas
18.
J Econ Entomol ; 108(4): 1540-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26470293

RESUMO

In 1999, crop consultants scouting for stink bugs (Hemiptera spp.) in South Carolina discovered a formerly unobserved seed rot of cotton that caused yield losses ranging from 10 to 15% in certain fields. The disease has subsequently been reported in fields throughout the southeastern Cotton Belt. Externally, diseased bolls appeared undamaged; internally, green fruit contain pink to dark brown, damp, deformed lint, and necrotic seeds. In greenhouse experiments, we demonstrated transmission of the opportunistic bacterium Pantoea agglomerans by the southern green stink bug, Nezara viridula (L.). Here, green bolls were sampled from stink bug management plots (insecticide protected or nontreated) from four South Atlantic coast states (North Carolina, South Carolina, Georgia, and Florida) to determine disease incidence in the field and its association with piercing-sucking insects feeding. A logistic regression analysis of the boll damage data revealed that disease was 24 times more likely to occur (P = 0.004) in bolls collected from plots in Florida, where evidence of pest pressure was highest, than in bolls harvested in NC with the lowest detected insect pressure. Fruit from plots treated with insecticide, a treatment which reduced transmission agent numbers, were 4 times less likely to be diseased than bolls from unprotected sites (P = 0.002). Overall, punctured bolls were 125 times more likely to also have disease symptoms than nonpunctured bolls, irrespective of whether or not plots were protected with insecticides (P = 0.0001). Much of the damage to cotton bolls that is commonly attributed to stink bug feeding is likely the resulting effect of vectored pathogens.


Assuntos
Herbivoria , Heterópteros/fisiologia , Controle de Insetos , Insetos Vetores/microbiologia , Pantoea/fisiologia , Doenças das Plantas/microbiologia , Animais , Frutas/microbiologia , Gossypium , Modelos Biológicos , Sementes/microbiologia , Sudeste dos Estados Unidos
19.
Heliyon ; 10(4): e25905, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370203

RESUMO

Administering anodal transcranial direct current stimulation (tDCS) at the primary motor cortex (M1) at various temporal loci relative to motor training is reported to affect subsequent performance gains. Stimulation administered in conjunction with motor training appears to offer the most robust benefit that emerges during offline epochs. This conclusion is made, however, based on between-experiment comparisons that involved varied methodologies. The present experiment addressed this shortcoming by administering the same 15-minute dose of anodal tDCS at M1 before, during, or after practice of a serial reaction time task (SRTT). It was anticipated that exogenous stimulation during practice with a novel SRTT would facilitate offline gains. Ninety participants were randomly assigned to one of four groups: tDCS before practice, tDCS during practice, tDCS after practice, or no tDCS. Each participant was exposed to 15 min of 2 mA of tDCS and motor training of an eight-element SRTT. The anode was placed at the right M1 with the cathode at the left M1, and the left hand was used to execute the SRTT. Test blocks were administered 1 and 24 h after practice concluded. The results revealed significant offline gain for all conditions at the 1-hour and 24-hour test blocks. Importantly, exposure to anodal tDCS at M1 at any point before, during, or after motor training failed to change the trajectory of skill development as compared to the no-stimulation control condition. These data add to the growing body of evidence questioning the efficacy of a single bout of exogenous stimulation as an adjunct to motor training for fostering skill learning.

20.
Brain Res ; 1807: 148311, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889535

RESUMO

The C3 region in the international 10-20 system for electroencephalography (EEG) recording is assumed to represent the right motor hand area. Therefore, in the absence of transcranial magnetic stimulation (TMS) or a neuronavigational system, neuromodulation methods, such as transcranial direct current stimulation, target C3 or C4, based on the international 10-20 system, to influence the cortical excitability of the right and left hand, respectively. The purpose of this study is to compare the peak-to-peak motor evoked potential (MEP) amplitudes of the right first dorsal interosseus (FDI) muscle after single-pulse TMS at C3 and C1 in the 10-20 system and at the region between C3 and C1 (i.e., C3h in the 10-5 system). Using an intensity of 110% of the resting motor threshold, 15 individual MEPs from each of C3, C3h, C1, and hotspots were randomly recorded from FDI for sixteen right-handed undergraduate students. Average MEPs were greatest at C3h and C1, with both being larger than those recorded at C3. These data are congruent with recent findings using topographic analysis of individual MRIs that revealed poor correspondence between C3/C4 and the respective hand knob. Implications for the use of scalp locations determined using the 10-20 system for localizing the hand area are highlighted.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Mãos/fisiologia , Músculo Esquelético/fisiologia , Potencial Evocado Motor/fisiologia , Eletroencefalografia , Estimulação Magnética Transcraniana/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA