Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur Radiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028376

RESUMO

OBJECTIVES: This study aimed to evaluate the potential of deep learning (DL)-assisted automated three-dimensional quantitative tumor burden at MRI to predict postoperative early recurrence (ER) of hepatocellular carcinoma (HCC). MATERIALS AND METHODS: This was a single-center retrospective study enrolling patients who underwent resection for BCLC A and B HCC and preoperative contrast-enhanced MRI. Quantitative total tumor volume (cm3) and total tumor burden (TTB, %) were obtained using a DL automated segmentation tool. Radiologists' visual assessment was used to ensure the quality control of automated segmentation. The prognostic value of clinicopathological variables and tumor burden-related parameters for ER was determined by Cox regression analyses. RESULTS: A total of 592 patients were included, with 525 and 67 patients assigned to BCLC A and B, respectively (2-year ER rate: 30.0% vs. 45.3%; hazard ratio (HR) = 1.8; p = 0.007). TTB was the most important predictor of ER (HR = 2.2; p < 0.001). Using 6.84% as the threshold of TTB, two ER risk strata were obtained in overall (p < 0.001), BCLC A (p < 0.001), and BCLC B (p = 0.027) patients, respectively. The BCLC B low-TTB patients had a similar risk for ER to BCLC A patients and thus were reassigned to a BCLC An stage; whilst the BCLC B high-TTB patients remained in a BCLC Bn stage. The 2-year ER rate was 30.5% for BCLC An patients vs. 58.1% for BCLC Bn patients (HR = 2.8; p < 0.001). CONCLUSIONS: TTB determined by DL-based automated segmentation at MRI was a predictive biomarker for postoperative ER and facilitated refined subcategorization of patients within BCLC stages A and B. CLINICAL RELEVANCE STATEMENT: Total tumor burden derived by deep learning-based automated segmentation at MRI may serve as an imaging biomarker for predicting early recurrence, thereby improving subclassification of Barcelona Clinic Liver Cancer A and B hepatocellular carcinoma patients after hepatectomy. KEY POINTS: Total tumor burden (TTB) is important for Barcelona Clinic Liver Cancer (BCLC) staging, but is heterogenous. TTB derived by deep learning-based automated segmentation was predictive of postoperative early recurrence. Incorporating TTB into the BCLC algorithm resulted in successful subcategorization of BCLC A and B patients.

2.
Eur Radiol ; 30(2): 744-755, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31485837

RESUMO

OBJECTIVE: To investigate the natural history of persistent pulmonary pure ground-glass nodules (pGGNs) with deep learning-assisted nodule segmentation. METHODS: Between January 2007 and October 2018, 110 pGGNs from 110 patients with 573 follow-up CT scans were included in this retrospective study. pGGN automatic segmentation was performed on initial and all follow-up CT scans using the Dr. Wise system based on convolution neural networks. Subsequently, pGGN diameter, density, volume, mass, volume doubling time (VDT), and mass doubling time (MDT) were calculated automatically. Enrolled pGGNs were categorized into growth, 52 (47.3%), and non-growth, 58 (52.7%), groups according to volume growth. Kaplan-Meier analyses with the log-rank test and Cox proportional hazards regression analysis were conducted to analyze the cumulative percentages of pGGN growth and identify risk factors for growth. RESULTS: The mean follow-up period of the enrolled pGGNs was 48.7 ± 23.8 months. The median VDT of the 52 pGGNs having grown was 1448 (range, 339-8640) days, and their median MDT was 1332 (range, 290-38,912) days. The 12-month, 24.7-month, and 60.8-month cumulative percentages of pGGN growth were 10%, 25.5%, and 51.1%, respectively, and they significantly differed among the initial diameter, volume, and mass subgroups (all p < 0.001). The growth pattern of pGGNs may conform to the exponential model. Lobulated sign (p = 0.044), initial mean diameter (p < 0.001), volume (p = 0.003), and mass (p = 0.023) predicted pGGN growth. CONCLUSIONS: Persistent pGGNs showed an indolent course. Deep learning can assist in accurately elucidating the natural history of pGGNs. pGGNs with lobulated sign and larger initial diameter, volume, and mass are more likely to grow. KEY POINTS: • The pure ground-glass nodule (pGGN) segmentation accuracy of the Dr. Wise system based on convolution neural networks (CNNs) was 96.5% (573/594). • The median volume doubling time (VDT) of 52 pure ground-glass nodules (pGGNs) having grown was 1448 days (range, 339-8640 days), and their median mass doubling time (MDT) was 1332 days (range, 290-38,912 days). The mean time to growth in volume was 854 ± 675 days (range, 116-2856 days). • The 12-month, 24.7-month, and 60.8-month cumulative percentages of pGGN growth were 10%, 25.5%, and 51.1%, respectively, and they significantly differed among the initial diameter, volume, and mass subgroups (all p values < 0.001). The growth pattern of pure ground-glass nodules may conform to exponential model.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Feminino , Seguimentos , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Estudos Retrospectivos , Fatores de Risco , Tempo
3.
Abdom Radiol (NY) ; 49(9): 3078-3087, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38642094

RESUMO

PURPOSE: To determine the role of deep learning-based arterial subtraction images in viability assessment on extracellular agents-enhanced MRI using LR-TR algorithm. METHODS: Patients diagnosed with HCC who underwent locoregional therapy were retrospectively collected. We constructed a deep learning-based subtraction model and automatically generated arterial subtraction images. Two radiologists evaluated LR-TR category on ordinary images and then evaluated again on ordinary images plus arterial subtraction images after a 2-month washout period. The reference standard for viability was tumor stain on the digital subtraction hepatic angiography within 1 month after MRI. RESULTS: 286 observations of 105 patients were ultimately enrolled. 157 observations were viable and 129 observations were nonviable according to the reference standard. The sensitivity and accuracy of LR-TR algorithm for detecting viable HCC significantly increased with the application of arterial subtraction images (87.9% vs. 67.5%, p < 0.001; 86.4% vs. 75.9%, p < 0.001). And the specificity slightly decreased without significant difference when the arterial subtraction images were added (84.5% vs. 86.0%, p = 0.687). The AUC of LR-TR algorithm significantly increased with the addition of arterial subtraction images (0.862 vs. 0.768, p < 0.001). The arterial subtraction images also improved inter-reader agreement (0.857 vs. 0.727). CONCLUSION: Extended application of deep learning-based arterial subtraction images on extracellular agents-enhanced MRI can increase the sensitivity of LR-TR algorithm for detecting viable HCC without significant change in specificity.


Assuntos
Algoritmos , Carcinoma Hepatocelular , Meios de Contraste , Aprendizado Profundo , Neoplasias Hepáticas , Imageamento por Ressonância Magnética , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Carcinoma Hepatocelular/diagnóstico por imagem , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Idoso , Sensibilidade e Especificidade , Angiografia Digital/métodos , Aumento da Imagem/métodos , Adulto , Técnica de Subtração , Interpretação de Imagem Assistida por Computador/métodos , Idoso de 80 Anos ou mais
4.
Insights Imaging ; 15(1): 120, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763975

RESUMO

OBJECTIVES: To investigate the utility of deep learning (DL) automated segmentation-based MRI radiomic features and clinical-radiological characteristics in predicting early recurrence after curative resection of single hepatocellular carcinoma (HCC). METHODS: This single-center, retrospective study included consecutive patients with surgically proven HCC who underwent contrast-enhanced MRI before curative hepatectomy from December 2009 to December 2021. Using 3D U-net-based DL algorithms, automated segmentation of the liver and HCC was performed on six MRI sequences. Radiomic features were extracted from the tumor, tumor border extensions (5 mm, 10 mm, and 20 mm), and the liver. A hybrid model incorporating the optimal radiomic signature and preoperative clinical-radiological characteristics was constructed via Cox regression analyses for early recurrence. Model discrimination was characterized with C-index and time-dependent area under the receiver operating curve (tdAUC) and compared with the widely-adopted BCLC and CNLC staging systems. RESULTS: Four hundred and thirty-four patients (median age, 52.0 years; 376 men) were included. Among all radiomic signatures, HCC with 5 mm tumor border extension and liver showed the optimal predictive performance (training set C-index, 0.696). By incorporating this radiomic signature, rim arterial phase hyperenhancement (APHE), and incomplete tumor "capsule," a hybrid model demonstrated a validation set C-index of 0.706 and superior 2-year tdAUC (0.743) than both the BCLC (0.550; p < 0.001) and CNLC (0.635; p = 0.032) systems. This model stratified patients into two prognostically distinct risk strata (both datasets p < 0.001). CONCLUSION: A preoperative imaging model incorporating the DL automated segmentation-based radiomic signature with rim APHE and incomplete tumor "capsule" accurately predicted early postsurgical recurrence of a single HCC. CRITICAL RELEVANCE STATEMENT: The DL automated segmentation-based MRI radiomic model with rim APHE and incomplete tumor "capsule" hold the potential to facilitate individualized risk estimation of postsurgical early recurrence in a single HCC. KEY POINTS: A hybrid model integrating MRI radiomic signature was constructed for early recurrence prediction of HCC. The hybrid model demonstrated superior 2-year AUC than the BCLC and CNLC systems. The model categorized the low-risk HCC group carried longer RFS.

5.
IEEE Trans Image Process ; 27(5): 2286-2300, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28816668

RESUMO

Existing person re-identification (re-id) methods typically assume that: 1) any probe person is guaranteed to appear in the gallery target population during deployment (i.e., closed-world) and 2) the probe set contains only a limited number of people (i.e., small search scale). Both assumptions are artificial and breached in real-world applications, since the probe population in target people search can be extremely vast in practice due to the ambiguity of probe search space boundary. Therefore, it is unrealistic that any probe person is assumed as one target people, and a large-scale search in person images is inherently demanded. In this paper, we introduce a new person re-id search setting, called large scale open-world (LSOW) re-id, characterized by huge size probe images and open person population in search thus more close to practical deployments. Under LSOW, the under-studied problem of person re-id efficiency is essential in addition to that of commonly studied re-id accuracy. We, therefore, develop a novel fast person re-id method, called Cross-view Identity Correlation and vErification (X-ICE) hashing, for joint learning of cross-view identity representation binarisation and discrimination in a unified manner. Extensive comparative experiments on three large-scale benchmarks have been conducted to validate the superiority and advantages of the proposed X-ICE method over a wide range of the state-of-the-art hashing models, person re-id methods, and their combinations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA