Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934691

RESUMO

In this research, we developed a miRNA sensor using an electrical double layer (EDL) gated field-effect transistor (FET)-based biosensor with enhanced sensitivity and stability. We conducted an in-depth investigation of the mechanisms that give rise to fluctuations in the electrical signal, affecting the stability and sensitivity of the miRNA sensor. Firstly, surface characteristics were studied by examining the metal electrodes deposited using different metal deposition techniques. The lower surface roughness of the gold electrode improved the electrical current stability. The temperature and viscosity of the sample solution were proven to affect the electrical stability, which was attributed to reducing the effect of Brownian motion. Therefore, by controlling the test conditions, such as temperature and sample viscosity, and the surface characteristics of the metal electrodes, we can enhance the stability of the sensor. Metal electrodes deposited via sputtering and e-beam evaporator yielded the lowest signal fluctuation. When ambient temperature was reduced to 3 °C, the sensor had better noise characteristics compared to room temperature testing. Higher viscosity of samples resulted in lower signal fluctuations. Lastly, surface functionalization was demonstrated to be a critical factor in enhancing the stability and sensitivity. MiRNA sensors with higher surface ratios of immobilized DNA probes performed with higher sensitivity and stability. This study reveals methods to improve the characteristics of EDL FET biosensors to facilitate practical implementation in clinical applications.


Assuntos
Técnicas Biossensoriais/métodos , MicroRNAs/análise , Transistores Eletrônicos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/instrumentação , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Condutividade Elétrica , Eletrodos , Ouro/química , MicroRNAs/metabolismo , Hibridização de Ácido Nucleico , Polímeros/química , Propriedades de Superfície , Temperatura
2.
Biomicrofluidics ; 15(2): 024110, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33868537

RESUMO

As the heavy metal contamination is becoming worse, monitoring the heavy metal content in water or human body gets more and more important. In this research, a cadmium ion-selective field effect transistor (Cd-ISFET) for rapidly detecting cadmium ions has been developed and the mechanism of the sensor is also investigated in depth. Our Cd-ISFET sensor exhibits high sensitivity beyond the ideal Nernst sensitivity, wide dynamic range, low detection limit (∼10-11M), which is comparable with inductively coupled plasma mass spectrometry, and easy operation enabling people to detect cadmium ion by themselves. From the analysis of electrical measurement results, this Cd-ISFET is preferred to operate at the bias with the maximum transconductance of the FET to enhance the sensor signal. The AC impedance measurement is carried out to directly investigate the mechanism of an ion-selective membrane (ISM). From impedance results, the real part of the total impedance, which is the resistance, was shown to dominate the sensor signal. The potential drop across the ISM is caused by the heavy metal ion in the membrane, which is employed to the gate of the FET via an extended gate electrode. Cadmium ion detection in one drop of human serum with this sensor was demonstrated. This cost-effective and highly sensitive sensor is promising and can be used by anyone and anywhere to prevent people from cadmium poisoning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA