Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
1.
Mol Cell ; 83(23): 4370-4385.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016475

RESUMO

Targeting epigenetic regulators to potentiate anti-PD-1 immunotherapy converges on the activation of type I interferon (IFN-I) response, mimicking cellular response to viral infection, but how its strength and duration are regulated to impact combination therapy efficacy remains largely unknown. Here, we show that mitochondrial CPT1A downregulation following viral infection restrains, while its induction by epigenetic perturbations sustains, a double-stranded RNA-activated IFN-I response. Mechanistically, CPT1A recruits the endoplasmic reticulum-localized ZDHHC4 to catalyze MAVS Cys79-palmitoylation, which promotes MAVS stabilization and activation by inhibiting K48- but facilitating K63-linked ubiquitination. Further elevation of CPT1A incrementally increases MAVS palmitoylation and amplifies the IFN-I response, which enhances control of viral infection and epigenetic perturbation-induced antitumor immunity. Moreover, CPT1A chemical inducers augment the therapeutic effect of combined epigenetic treatment with PD-1 blockade in refractory tumors. Our study identifies CPT1A as a stabilizer of MAVS activation, and its link to epigenetic perturbation can be exploited for cancer immunotherapy.


Assuntos
Interferon Tipo I , Viroses , Humanos , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lipoilação , Epigênese Genética , Imunidade Inata
2.
Nucleic Acids Res ; 52(9): 4969-4984, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38452206

RESUMO

Proteasome-mediated degradation of chromatin-bound NF-κB is critical in terminating the transcription of pro-inflammatory genes and can be triggered by Set9-mediated lysine methylation of the RelA subunit. However, the E3 ligase targeting methylated RelA remains unknown. Here, we find that two structurally similar substrate-recognizing components of Cullin-RING E3 ligases, WSB1 and WSB2, can recognize chromatin-bound methylated RelA for polyubiquitination and proteasomal degradation. We showed that WSB1/2 negatively regulated a subset of NF-κB target genes via associating with chromatin where they targeted methylated RelA for ubiquitination, facilitating the termination of NF-κB-dependent transcription. WSB1/2 specifically interacted with methylated lysines (K) 314 and 315 of RelA via their N-terminal WD-40 repeat (WDR) domains, thereby promoting ubiquitination of RelA. Computational modeling further revealed that a conserved aspartic acid (D) at position 158 within the WDR domain of WSB2 coordinates K314/K315 of RelA, with a higher affinity when either of the lysines is methylated. Mutation of D158 abolished WSB2's ability to bind to and promote ubiquitination of methylated RelA. Together, our study identifies a novel function and the underlying mechanism for WSB1/2 in degrading chromatin-bound methylated RelA and preventing sustained NF-κB activation, providing potential new targets for therapeutic intervention of NF-κB-mediated inflammatory diseases.


Assuntos
Cromatina , Complexo de Endopeptidases do Proteassoma , Fator de Transcrição RelA , Ubiquitinação , Humanos , Cromatina/metabolismo , Células HEK293 , Lisina/metabolismo , Metilação , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Fator de Transcrição RelA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
Plant Physiol ; 196(2): 979-995, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917222

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops worldwide and a major source of human cadmium (Cd) intake. Limiting grain Cd concentration (Gr_Cd_Conc) in wheat is necessary to ensure food safety. However, the genetic factors associated with Cd uptake, translocation and distribution and Gr_Cd_Conc in wheat are poorly understood. Here, we mapped quantitative trait loci (QTLs) for Gr_Cd_Conc and its related transport pathway using a recombinant inbred line (RIL) population derived from 2 Polish wheat varieties (RIL_DT; dwarf Polish wheat [DPW] and tall Polish wheat [TPW]). We identified 29 novel major QTLs for grain and tissue Cd concentration; 14 novel major QTLs for Cd uptake, translocation, and distribution; and 27 major QTLs for agronomic traits. We also analyzed the pleiotropy of these QTLs. Six novel QTLs (QGr_Cd_Conc-1A, QGr_Cd_Conc-3A, QGr_Cd_Conc-4B, QGr_Cd_Conc-5B, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A) for Gr_Cd_Conc explained 8.16% to 17.02% of the phenotypic variation. QGr_Cd_Conc-3A, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A pleiotropically regulated Cd transport; 3 other QTLs were organ-specific for Gr_Cd_Conc. We fine-mapped the locus of QGr_Cd_Conc-4B and identified the candidate gene as Cation/Ca exchanger 2 (TpCCX2-4B), which was differentially expressed in DPW and TPW. It encodes an endoplasmic reticulum membrane/plasma membrane-localized Cd efflux transporter in yeast. Overexpression of TpCCX2-4B reduced Gr_Cd_Conc in rice. The average Gr_Cd_Conc was significantly lower in TpCCX2-4BDPW genotypes than in TpCCX2-4BTPW genotypes of the RIL_DT population and 2 other natural populations, based on a Kompetitive allele-specific PCR marker derived from the different promoter sequences between TpCCX2-4BDPW and TpCCX2-4BTPW. Our study reveals the genetic mechanism of Cd accumulation in wheat and provides valuable resources for genetic improvement of low-Cd-accumulating wheat cultivars.


Assuntos
Cádmio , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/metabolismo , Cádmio/metabolismo , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Grão Comestível/genética , Grão Comestível/metabolismo , Sementes/genética , Sementes/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Physiol ; 196(2): 870-882, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39158082

RESUMO

Karyotypes provide key cytogenetic information on phylogenetic relationships and evolutionary origins in related plant species. The St genome of Pseudoroegneria contributes to 8 alloploid genera, representing over half of the species that are highly valuable for wheat (Triticum aestivum) breeding and for understanding Triticeae species evolution. However, St chromosome characterization is challenging due to limited cytogenetic markers and DNA information. We developed a complete set of St genome-specific chromosome painting probes for identification of the individual chromosomes 1St to 7St based on the genome sequences of Pseudoroegneria libanotica and wheat. We revealed the conservation of St chromosomes in St-containing species by chromosome painting, including Pseudoroegneria, Roegneria, Elymus, and Campeiostachys. Notably, the Y genome showed hybridization signals, albeit weaker than those of the St genome. The awnless species harboring the Y genome exhibited more intense hybridization signals compare to the awned species in Roegneria and Campeiostachys, yet weaker than the hybridization signals of the St genome in autotetraploid Pseudoroegneria strigosa. Although awnless species were morphologically more similar to each other, phenotypic divergence progressively increased from awnless to awned species. Our results indicate that the Y genome originated from the St genome and shed light on the possible origin of the Roegneria and Campeiostachys species, enhancing our understanding of St-genome-containing species evolution.


Assuntos
Coloração Cromossômica , Cromossomos de Plantas , Genoma de Planta , Poaceae , Coloração Cromossômica/métodos , Cromossomos de Plantas/genética , Poaceae/genética , Triticum/genética , Filogenia , Hibridização in Situ Fluorescente
5.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094099

RESUMO

Design-based STEM learning is believed to be an effective cross-disciplinary strategy for promoting children's cognitive development. Yet, its impact on executive functions, particularly for disadvantaged children, still need to be explored. This study investigated the effects of short-term intensive design-based STEM learning on executive function among left-behind children. Sixty-one Grade 4 students from a school dedicated to the left-behind children in China were sampled and randomly assigned to an experimental group (10.70 ± 0.47 years old, n = 30) or a control group (10.77 ± 0.43 years old, n = 31). The experimental group underwent a two-week design-based STEM training program, while the control group participated in a 2-week STEM-related reading program. Both groups were assessed with the brain activation from 4 brain regions of interest using functional near-infrared spectroscopy (fNIRS) and behavioral measures during a Stroop task before and after the training. Analysis disclosed: (i) a significant within-group time effect in the experimental group, with posttest brain activation in Brodmann Area 10 and 46 being notably lower during neutral and word conditions; (ii) a significant between-group difference at posttest, with the experimental group showing considerably lower brain activation in Brodmann Area 10 and Brodmann Area 46 than the control group; and (iii) a significant task effect in brain activity among the three conditions of the Stroop task. These findings indicated that this STEM learning effectively enhanced executive function in left-behind children. The discrepancy between the non-significant differences in behavioral performance and the significant ones in brain activation implies a compensatory mechanism in brain activation. This study enriches current theories about the impact of Science, Technology, Engineering, and Mathematics (STEM) learning on children's executive function development, providing biological evidence and valuable insights for educational curriculum design and assessment.


Assuntos
Função Executiva , Aprendizagem , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Função Executiva/fisiologia , Masculino , Feminino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Criança , Aprendizagem/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Leitura , Matemática , Teste de Stroop , Lateralidade Funcional/fisiologia , China
6.
Am J Respir Cell Mol Biol ; 71(2): 169-181, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38593442

RESUMO

Heightened unfolded protein responses (UPRs) are associated with the risk for asthma, including severe asthma. Treatment-refractory severe asthma manifests a neutrophilic phenotype with T helper (Th)17 responses. However, how UPRs participate in the deregulation of Th17 cells leading to neutrophilic asthma remains elusive. This study found that the UPR sensor IRE1 is induced in the murine lung with fungal asthma and is highly expressed in Th17 cells relative to naive CD4+ T cells. Cytokine (e.g., IL-23) signals induce the IRE1-XBP1s axis in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by both human and mouse Th17 cells. Ern1 (encoding IRE1) deficiency decreases the expression of endoplasmic reticulum stress factors and impairs the differentiation and cytokine secretion of Th17 cells. Genetic ablation of Ern1 leads to alleviated Th17 responses and airway neutrophilia in a fungal airway inflammation model. Consistently, IL-23 activates the JAK2-IRE1-XBP1s pathway in vivo and enhances Th17 responses and neutrophilic infiltration into the airway. Taken together, our data indicate that IRE1, noncanonically activated by cytokine signals, promotes neutrophilic airway inflammation through the UPR-mediated secretory function of Th17 cells. The findings provide a novel insight into the fundamental understanding of IRE1 in Th17-biased TH2-low asthma.


Assuntos
Asma , Endorribonucleases , Neutrófilos , Proteínas Serina-Treonina Quinases , Células Th17 , Animais , Células Th17/imunologia , Células Th17/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Humanos , Endorribonucleases/metabolismo , Endorribonucleases/genética , Asma/imunologia , Asma/patologia , Asma/metabolismo , Resposta a Proteínas não Dobradas , Camundongos , Camundongos Endogâmicos C57BL , Interleucina-23/metabolismo , Interleucina-23/imunologia , Estresse do Retículo Endoplasmático/imunologia , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Transdução de Sinais , Camundongos Knockout , Pulmão/imunologia , Pulmão/patologia , Pulmão/metabolismo
7.
BMC Genomics ; 25(1): 253, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448864

RESUMO

BACKGROUND: The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae), whose genome symbol was designed as "St", accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome, exhibited strong drought resistance, and was morphologically covered by cuticular wax on the aerial part. Therefore, the St-genome sequencing data could provide fundamental information for studies of genome evolution and reveal its mechanisms of cuticular wax and drought resistance. RESULTS: In this study, we reported the chromosome-level genome assembly for the St genome of Pse. libanotica, with a total size of 2.99 Gb. 46,369 protein-coding genes annotated and 71.62% was repeat sequences. Comparative analyses revealed that the genus Pseudoroegneria diverged during the middle and late Miocene. During this period, unique genes, gene family expansion, and contraction in Pse. libanotica were enriched in biotic and abiotic stresses, such as fatty acid biosynthesis which may greatly contribute to its drought adaption. Furthermore, we investigated genes associated with the cuticular wax formation and water deficit and found a new Kcs gene evm.TU.CTG175.54. It plays a critical role in the very long chain fatty acid (VLCFA) elongation from C18 to C26 in Pse. libanotica. The function needs more evidence to be verified. CONCLUSIONS: We sequenced and assembled the St genome in Triticeae and discovered a new KCS gene that plays a role in wax extension to cope with drought. Our study lays a foundation for the genome diversification of Triticeae species and deciphers cuticular wax formation genes involved in drought resistance.


Assuntos
Resistência à Seca , Elymus , Mapeamento Cromossômico , Cromossomos , Ácidos Graxos
8.
EMBO J ; 39(2): e102201, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31762063

RESUMO

The innate immune sensor NLRP3 assembles an inflammasome complex with NEK7 and ASC to activate caspase-1 and drive the maturation of proinflammatory cytokines IL-1ß and IL-18. NLRP3 inflammasome activity must be tightly controlled, as its over-activation is involved in the pathogenesis of inflammatory diseases. Here, we show that NLRP3 inflammasome activation is suppressed by a centrosomal protein Spata2. Spata2 deficiency enhances NLRP3 inflammasome activity both in the macrophages and in an animal model of peritonitis. Mechanistically, Spata2 recruits the deubiquitinase CYLD to the centrosome for deubiquitination of polo-like kinase 4 (PLK4), the master regulator of centrosome duplication. Deubiquitination of PLK4 facilitates its binding to and phosphorylation of NEK7 at Ser204. NEK7 phosphorylation in turn attenuates NEK7 and NLRP3 interaction, which is required for NLRP3 inflammasome activation. Pharmacological or shRNA-mediated inhibition of PLK4, or mutation of the NEK7 Ser204 phosphorylation site, augments NEK7 interaction with NLRP3 and causes increased NLRP3 inflammasome activation. Our study unravels a novel centrosomal regulatory pathway of inflammasome activation and may provide new therapeutic targets for the treatment of NLRP3-associated inflammatory diseases.


Assuntos
Centrossomo/imunologia , Enzima Desubiquitinante CYLD/metabolismo , Inflamassomos/imunologia , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/fisiologia , Animais , Centrossomo/metabolismo , Citocinas/metabolismo , Enzima Desubiquitinante CYLD/genética , Modelos Animais de Doenças , Inflamassomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases Relacionadas a NIMA/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Peritonite/imunologia , Peritonite/metabolismo , Peritonite/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Ubiquitinação
9.
BMC Plant Biol ; 24(1): 930, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370516

RESUMO

BACKGROUND: Wheat is one of major sources of human cadmium (Cd) intake. Reducing the grain Cd concentrations in wheat is urgently required to ensure food security and human health. In this study, we performed a field experiment at Wenjiang experimental field of Sichuan Agricultural University (Chengdu, China) to reveal the effects of FeCl3 and Fe2(SO4)3 on reducing grain Cd concentrations in dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB). RESULTS: Soil application of FeCl3 and Fe2(SO4)3 (0.04 M Fe3+/m2) significantly reduced grain Cd concentration in DPW at maturity by 19.04% and 33.33%, respectively. They did not reduce Cd uptake or root-to-shoot Cd translocation, but increased Cd distribution in lower leaves, lower internodes, and glumes. Meanwhile, application of FeCl3 and Fe2(SO4)3 up-regulated the expression of TpNRAMP5, TpNRAMP2 and TpYSL15 in roots, and TpYSL15 and TpZIP3 in shoots; they also downregulated the expression of TpZIP1 and TpZIP3 in roots, and TpIRT1 and TpNRAMP5 in shoots. CONCLUSIONS: The reduction in grain Cd concentration caused by application of FeCl3 and Fe2(SO4)3 was resulted from changes in shoot Cd distribution via regulating the expression of some metal transporter genes. Overall, this study reports the physiological pathways of soil applied Fe fertilizer on grain Cd concentration in wheat, suggests a strategy for reducing grain Cd concentration by altering shoot Cd distribution.


Assuntos
Cádmio , Compostos Férricos , Triticum , Triticum/metabolismo , Triticum/genética , Cádmio/metabolismo , Compostos Férricos/metabolismo , Cloretos/metabolismo , Fertilizantes , Solo/química , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Grão Comestível/metabolismo , Grão Comestível/genética , China , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
10.
BMC Plant Biol ; 24(1): 1006, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39455993

RESUMO

BACKGROUND: Fusarium head blight (FHB), a devastating disease of wheat production, is predominantly elicited by Fusarium graminearum (Fg). The tetraploid Thinopyrum elongatum is a tertiary gene resource of common wheat that possesses high affinity and displays high resistance traits against multiple biotic and abiotic stress. We aim to employ and utilize the novel FHB resistance resources from the wild germplasm of common wheat for breeding. RESULTS: Durum wheat-tetraploid Th. elongatum amphiploid 8801 was hybridized with common wheat cultivars SM482 and SM51, and the F5 generation was generated. We conducted cytogenetically in situ hybridization (ISH) technologies to select and confirm a genetically stable 7E(7D) substitution line K17-1069-5, which showed FHB expansion resistance in both field and greenhouse infection experiments and displayed no significant disadvantage in agronomic traits compared to their common wheat parents in the field. The F2 segregation populations (K17-1069-5 × SM830) showed that the 7E chromosome conferred dominant FHB resistance with dosage effect. We developed 19 SSR molecular markers specific to chromosome 7E, which could be conducted for genetic mapping and large breeding populations marker-assisted selection (MAS) during selection procedures in the future. We isolated a novel Fhb7 allele from the tetraploid Th. elongatum chromosome 7E (Chr7E) using homology-based cloning, which was designated as TTE7E-Fhb7. CONCLUSIONS: In summary, our study developed a novel wheat-tetraploid Thinopyrum elongatum 7E(7D) K17-1069-5 substitution line which contains stable FHB resistance.


Assuntos
Cromossomos de Plantas , Resistência à Doença , Fusarium , Doenças das Plantas , Tetraploidia , Triticum , Triticum/genética , Triticum/microbiologia , Fusarium/fisiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Cromossomos de Plantas/genética , Melhoramento Vegetal , Poaceae/genética , Poaceae/microbiologia , Mapeamento Cromossômico
11.
Small ; : e2405453, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263778

RESUMO

High-quality solid electrolyte interphase (SEI) layers can effectively suppress the growth of Li dendrites and improve the cycling stability of lithium metal batteries. Herein, 1-(6-bromohexanoyl)-3-butylurea is used to construct an organic/inorganic hybrid (designated as LiBr-HBU) SEI layer that features a uniform and compact structure. The LiBr-HBU SEI layer exhibits superior electrolyte wettability and air stability as well as strong attachment to Li foils. The LiBr-HBU SEI layer achieves a Li+ conductivity of 2.75 × 10-4 S cm-1, which is ≈50-fold higher than the value measured for a native SEI layer. A Li//Li symmetric cell containing the LiBr-HBU SEI layer exhibits markedly improved cyclability when compared with the cell containing a native SEI layer, especially at a high current density (e.g., cycling life up to 1333 h at 15 mA cm-2). The LiBr-HBU SEI layer also improves the performance of lithium-sulfur cells, particularly the rate capability (548 mAh g-1 at 10 C) and cycling stability (513 mAh g-1 at 0.5 C after 500 cycles). The methodology described can be extended to the commercial processing of Li metal anodes as the artificial SEI layer also protects Li metal against corrosion.

12.
Theor Appl Genet ; 137(10): 246, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365463

RESUMO

KEY MESSAGE: Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. Deployment of disease resistance (R) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL, Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76-612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.


Assuntos
Cromossomos de Plantas , Resistência à Doença , Genes de Plantas , Melhoramento Vegetal , Doenças das Plantas , Poaceae , Translocação Genética , Triticum , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Triticum/genética , Triticum/microbiologia , Poaceae/genética , Poaceae/microbiologia , Cromossomos de Plantas/genética , Tetraploidia , Marcadores Genéticos , Puccinia/patogenicidade , Mapeamento Cromossômico , Hibridização in Situ Fluorescente , Basidiomycota/patogenicidade
13.
Theor Appl Genet ; 137(1): 17, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198011

RESUMO

KEY MESSAGE: The new stripe rust resistance gene Yr4EL in tetraploid Th. elongatum was identified and transferred into common wheat via 4EL translocation lines. Tetraploid Thinopyrum elongatum is a valuable genetic resource for improving the resistance of wheat to diseases such as stripe rust, powdery mildew, and Fusarium head blight. We previously reported that chromosome 4E of the 4E (4D) substitution line carries all-stage stripe rust resistance genes. To optimize the utility of these genes in wheat breeding programs, we developed translocation lines by inducing chromosomal structural changes through 60Co-γ irradiation and developing monosomic substitution lines. In total, 53 plants with different 4E chromosomal structural changes were identified. Three homozygous translocation lines (T4DS·4EL, T5AL·4EL, and T3BL·4EL) and an addition translocation line (T5DS·4EL) were confirmed by the genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), FISH-painting, and wheat 55 K SNP array analyses. These four translocation lines, which contained chromosome arm 4EL, exhibited high stripe rust resistance. Thus, a resistance gene (tentatively named Yr4EL) was localized to the chromosome arm 4EL of tetraploid Th. elongatum. For the application of marker-assisted selection (MAS), 32 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome arm 4EL and co-segregation with Yr4EL. Furthermore, the 4DS·4EL line could be selected as a good pre-breeding line that better agronomic traits than other translocation lines. We transferred Yr4EL into three wheat cultivars SM482, CM42, and SM51, and their progenies were all resistant to stripe rust, which can be used in future wheat resistance breeding programs.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Tetraploidia , Poaceae/genética
14.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698276

RESUMO

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Assuntos
Aegilops , Basidiomycota , Mapeamento Cromossômico , Resistência à Doença , Perfilação da Expressão Gênica , Genes de Plantas , Doenças das Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Aegilops/genética , Aegilops/microbiologia , Melhoramento Vegetal , Transcriptoma , Cromossomos de Plantas/genética , Puccinia/patogenicidade , Puccinia/fisiologia , Regulação da Expressão Gênica de Plantas
15.
Lupus ; 33(2): 155-165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182135

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a complex autoimmune connective tissue disease (CTD) that is an important cause of devastating pulmonary arterial hypertension (PAH), and persistent progression of PAH can lead to right heart failure, predicting a poor prognosis for SLE patients. Right ventricular-pulmonary arterial (RV-PA) coupling with echocardiography has been demonstrated to be a noninvasive alternative method for evaluating PAH patients' predictive outcomes. Whether the ratio of right ventricular stroke volume (RVSV) to right ventricular end-systolic volume (RVESV) measured by three-dimensional echocardiography (3DE) is a new index of RV-PA coupling has not been discussed as a new predictor for the clinical outcome of systemic lupus erythematosus-associated pulmonary arterial hypertension (SLE-PAH). METHODS: From June 2019 to February 2023, 46 consecutive patients with SLE-PAH were enrolled prospectively, and their clinical data and echocardiographs were studied and analyzed. The control group consisted of 30 healthy subjects matched for age, sex, and body surface area (BSA). The main endpoints of this study were a composite of all-cause mortality and adverse clinical events. Baseline clinical characteristics and echocardiographic assessments were analyzed. RESULTS: During a median of 24 months (IQR 18-31), 16 of 46 SLE-PAH patients (34.7%) experienced endpoint-related events. At baseline, patients who experienced mortality or adverse events had a worse WHO functional class (WHO FC) and lower anti-double-stranded DNA (dsDNA) antibody levels. The right ventricular (RV) systolic dysfunction in SLE-PAH subjects was significantly worse than that in the healthy control group, especially in SLE-PAH patients in the endpoint event group. Compared to controls, patients with SLE-PAH had a lower RVSV/RVESV ratio. In the group comparison, patients who had experienced an endpoint event had a sequentially worse ratio (1.86 (1.65-2.3) versus 1.30 (1.09-1.46) versus 0.64 (0.59-0.67), p < .001). There were statistically significant associations between the RVSV/RVESV ratio to routine RV systolic function and clinical parameters. The RVSV/RVESV ratio was negatively correlated with the WHO FC (r = -0.621, p < .001) and positively correlated with the anti-dsDNA level. The ROC curve showed that the optimal cutoff for RVSV/RVESV < 0.712 determined a higher risk of poor prognosis. Kaplan‒Meier survival curves showed that an RVSV/RVESV ratio >0.712 was associated with more favorable long-term outcomes. CONCLUSIONS: The 3DE-derived SV/ESV ratio as a noninvasive alternative surrogate of RV-PA coupling was an eximious indicator for identifying endpoint events in SLE-PAH patients and can provide a diagnostic basis for clinical intervention.


Assuntos
Ecocardiografia Tridimensional , Hipertensão Pulmonar , Lúpus Eritematoso Sistêmico , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Humanos , Hipertensão Pulmonar/etiologia , Lúpus Eritematoso Sistêmico/complicações , Ecocardiografia Tridimensional/métodos , Ecocardiografia , Disfunção Ventricular Direita/etiologia
16.
Cancer Control ; 31: 10732748241284537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39303296

RESUMO

BACKGROUND: The cancer burden in China has been increasing over the decades. However, the cancer incidence remains unknown in Ma'anshan, which is one of the central cities in the Yangtze River Delta in Eastern China. The study was designed to describe the cancer incidence and trends in Ma'anshan from 2011 to 2018, providing information about cancer etiology that is useful for prevention programs. METHODS: The cancer incidence rate and age-standardized incidence rate (ASIR) were calculated using the cancer registry data in Ma'anshan during 2011-2018. The average annual percentage change (AAPC) of the ASIR was analyzed by the Joinpoint regression analysis. Age, period, and cohort effects on cancer incidence were estimated through the age-period-cohort model. RESULTS: There were 13,508 newly diagnosed cancer cases in males and 9558 in females in Ma'anshan during 2011-2018. The ASIR maintained a steady trend in both males and females. Age effects showed that cancer risk increased with age in both genders; no visible period effects were detected during this study period. Cohort effects changed slowly until the end of the 1950s, then started decreasing in males while increasing in females after 1960. Lung, gastric, female breast, colorectal, cervical, esophageal, liver, thyroid, lymphoma, and pancreatic cancer were the most common cancers in Ma'anshan during the study period. The ASIR of gastric cancer (AAPC: -3.72%), esophageal cancer (AAPC: -8.30%), and liver cancer (AAPC: -5.55%) declined, while that of female breast cancer (AAPC: 3.91%), colorectal cancer (AAPC: 3.23%), and thyroid cancer (AAPC: 22.38%) rose. CONCLUSION: During 2011-2018, the cancer incidence in Ma'anshan was lower than that in China, nation-wide. The incidence of upper gastrointestinal cancer decreased gradually while female breast, colorectal, and thyroid cancers showed an upward trend, consistent with the changes in the cancer spectrum in China. Further studies should be designed to discover the underlying causes of these findings.


Assuntos
Neoplasias , Sistema de Registros , Humanos , China/epidemiologia , Neoplasias/epidemiologia , Incidência , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Adolescente , Criança , Adulto Jovem , Pré-Escolar , Lactente , Recém-Nascido , Idoso de 80 Anos ou mais
17.
EMBO Rep ; 23(7): e54132, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35652247

RESUMO

Our knowledge of the coordination of intergenerational inheritance and offspring metabolic reprogramming by gastrointestinal endocrine factors is largely unknown. Here, we showed that secretin (SCT), a brain-gut peptide, is downregulated by overnutrition in pregnant mice and women. More importantly, genetic loss of SCT in the maternal gut results in undesirable phenotypes developed in offspring including enhanced high-fat diet (HFD)-induced obesity and attenuated browning of inguinal white adipose tissue (iWAT). Mechanistically, loss of maternal SCT represses iWAT browning in offspring by a global change in genome methylation pattern through upregulation of DNMT1. SCT functions to facilitate ubiquitination and degradation of DNMT1 by activating AMPKα, which contributes to the observed alteration of DNMT1 in progeny. Lastly, we showed that SCT treatment during pregnancy can reduce the development of obesity and improve glucose tolerance and insulin resistance in offspring of HFD-fed females, suggesting that SCT may serve as a novel biomarker or a strategy for preventing metabolic diseases.


Assuntos
Resistência à Insulina , Secretina , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Obesidade/prevenção & controle , Gravidez , Secretina/metabolismo
18.
Mol Breed ; 44(8): 55, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39157810

RESUMO

Preventing the widespread occurrence of stripe rust in wheat largely depends on the identification of new stripe rust resistance genes and the breeding of cultivars with durable resistance. In previous study, we reported 6E of wheat-tetraploid Thinopyrum elongatum 6E (6D) substitution line contains adult-stage stripe rust resistance genes. In this study, three novel wheat-tetraploid Th. elongatum translocation lines were generated from the offspring of a cross between common wheat and the 6E (6D) substitution line. Genomic in situ hybridization (GISH), fluorescence in situ hybridization chromosome painting (FISH painting), repetitive sequential FISH, and 55 K SNP analyses indicated that K227-48, K242-82, and K246-6 contained 42 chromosomes and were 6DL·6ES, 2DL·6EL, and 6DS·6EL translocation lines, respectively. The assessment of stripe rust resistance revealed that K227-48 was susceptible to a mixture of Pst races, whereas the 6EL lines K242-82 and K246-6 were highly resistance to stripe rust at the adult stage. Thus, this resistance was due to the chromosome arm 6EL of tetraploid Th. elongatum. The improved agronomic performance of 6DS·6EL translocation line may be a useful novel germplasm resource for wheat breeding programs. For the application of marker-assisted selection (MAS), 47 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome 6E using the whole-genome sequence of diploid Th. elongatum. The 6DS·6EL translocation line and SSR markers have the potential to be deploy for future stripe rust resistance wheat breeding program. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01493-6.

19.
Phys Chem Chem Phys ; 26(2): 1396-1405, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38112118

RESUMO

Intrinsic magnetic semiconductors hold great promise in the fields of fundamental magnetization and spintronics. One such semiconductor is Cr2Si2Ti6 (CST), a quasi two-dimensional (2D) magnetic semiconductor with potential applications in future magnetic devices. However, the origin of ferromagnetism in CST remains a mystery. To investigate this, ac/dc susceptibility and electronic spin resonance (ESR) measurements were conducted. Based on ac susceptibility scaling, the critical temperature (TC) for the ferromagnetic (FM) to paramagnetic (PM) phase transition was found to be ∼32.5 K, with a critical exponent of δ = 6.7 from the critical isotherm, ß + γ = 1.72 from the temperature dependence of the crossover line, and γ = 1.43 from the temperature dependence of susceptibility along the same line. All critical exponents were found to be consistent with the dc magnetization scaling method. However, above and below TC, the origin of magnetism cannot be explained by a single theory. To explore the origin of abnormal magnetic critical behavior, ESR measurements were performed. Below T* ∼ 130 K, the ESR measurements revealed that the resonance field width (ΔH) tends to increase and decrease for the applied magnetic field H parallel and perpendicular to the c axis, respectively, indicating the onset of magnetic interaction even in the PM state. Meanwhile, the deviation from Curie-Weiss behavior below T* also confirmed the occurrence of magnetic correlation above the TC in CST. These observations suggest that the competition and cooperation among the direct and indirect interactions, the structural distortion and the van der Waals interaction at high temperature should be considered to investigate the origin of anomalous magnetism in CST. The present results provide valuable insights into the nature of ferromagnetism in 2D magnetic semiconductors.

20.
BMC Cardiovasc Disord ; 24(1): 381, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044140

RESUMO

BACKGROUND: Metabolic abnormalities and immune inflammation are deeply involved in pulmonary vascular remodelling and the development of pulmonary hypertension (PH). However, the regulatory mechanisms of glycolysis in macrophages are still elusive. Cumulative evidence indicates that ß-catenin plays a crucial role in metabolic reprogramming. This study aimed to investigate the effect of ß-catenin on macrophage glycolysis in PH. METHODS: LPS-induced BMDMs were generated via in vitro experiments. A monocrotaline (MCT)-induced PH rat model was established, and the ß-catenin inhibitor XAV939 was administered in vivo. The role of ß-catenin in glycolysis was analysed. The degree of pulmonary vascular remodelling was measured. RESULTS: ß-catenin was significantly increased in both in vitro and in vivo models. In LPS-induced BMDMs, ß-catenin increased the levels of hexokinase 2 (HK2), phosphofructokinase (PFK), M2-pyruvate kinase (PKM2), lactate dehydrogenase (LDH), and lactate (LA) and the expression of inflammatory cytokines and promoted PASMC proliferation and migration in vitro. XAV939 decreased the level of glycolysis and downregulated the expression of inflammatory cytokines in vivo. MCT promoted pulmonary arterial structural remodelling and right ventricular hypertrophy, and XAV939 alleviated these changes. CONCLUSIONS: Our findings suggest that ß-catenin is involved in the development of PH by promoting glycolysis and the inflammatory response in macrophages. Inhibition of ß-catenin could improve the progression of PH.


Assuntos
Modelos Animais de Doenças , Glicólise , Hipertensão Pulmonar , Macrófagos , Monocrotalina , Artéria Pulmonar , Ratos Sprague-Dawley , Remodelação Vascular , beta Catenina , Animais , Glicólise/efeitos dos fármacos , beta Catenina/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Masculino , Remodelação Vascular/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/patologia , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Mediadores da Inflamação/metabolismo , Ratos , Movimento Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA