Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 262(Pt 2): 119892, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222729

RESUMO

The abuse of amphetamine-type stimulants (ATSs) has caused irreversible harm to public safety and ecosystems. A novel polymerized deep eutectic solvent modified magnetic pomelo peel biochar (PMBC) was prepared, and the differences in adsorption of four abused amphetamine-type stimulants (ATSs: AMP, MAMP, MDA and MDMA) were due to varying hydrogen bonds quantities and strengths. PMBC showed excellent chemical reactivity to MDMA, with a maximum adsorption capacity of 926.13 µg g-1, which was 3.25, 2.52 and 1.15 times higher than that of AMP, MAMP and MDA, respectively. Modern spectral analysis showed that there were a series of active centers (-COOH, -NH2 and -OH) on the PMBC, which could form hydrogen bond networks with the nitrogen and oxygen functional groups of ATSs. In various chemical environments: pH level (4-11), inorganic ion and organic matter (humic acid), PMBC maintained high activity towards four ATSs. Additionally, the quantum chemical calculations revealed that the methylenedioxy bridge of ATSs can increase the active sites, and the -NH- and -NH2 groups had different hydrogen bond formation capabilities, which together resulted in the adsorption order of PMBC on the four ATSs: MDMA > MDA > MAMP > AMP. Moreover, the hydrogen-bonding binding energies of several common hydrogen-bonding types were compared, including O-H····O, N-H····O/O-H····N and N-H···N. This study laid an empirical and theoretical foundation for the efficient capture of ATSs in water and contributed to the innovative design of materials.

2.
Environ Pollut ; 342: 123044, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042474

RESUMO

Mephedrone (4-methylmethcathinone, MEPH) exhibited severe ecologic hazards and health detriments. A novel deep eutectic solvent functionalized magnetic ZIF-8/hierarchical porous carbon (DMZH) with excellent selectivity, interference resistance and recyclability, was developed for the rapid adsorption of MEPH. Initially, potential adsorption sites of MEPH were predicted. Then, π-π and hydrogen bonding interactions were proposed and verified from characterizations, comparative experiments and theoretical calculations. The synergistic effects of the hydrogen bonding and π-π interactions increased the adsorption energies from -15.26 kcal⋅mol-1 to -21.83 kcal⋅mol-1, enhanced the degree of π-dissociation, enlarged the π-π isosurface area, extended the van der Waals surface mutual penetration distance, achieving stronger affinity and remarkable adsorption. Furthermore, offset (parallel-displaced) π-π stacking form existed between DMZH and MEPH. DMZH acted as the hydrogen bond donor and MEPH served as the hydrogen bond acceptor to form O-H⋯O and N-H⋯O hydrogen bonding interaction. Profiting from the synergistic effects, DMZH showed satisfactory adsorption for MEPH within 20 min with a maximum adsorption capacity of 3270.11 µg∙g-1, displayed excellent performance in wide pH range of 5∼11 and in the coexistence of multi-chemicals.


Assuntos
Metanfetamina , Ligação de Hidrogênio , Adsorção , Metanfetamina/química , Carbono
3.
Environ Pollut ; 356: 124193, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788993

RESUMO

The accurate discovering and monitoring of 3,4-methylenedioxymethamphetamine (MDMA) are especially important because of its substantial toxicity and potential harm to human and the ecological systems. Three types of polymerized deep eutectic solvents functionalized magnetic biochar (MBC@poly (AA/AAC/AAm-ChCl)) were successfully synthesized to adsorb MDMA. The isotherm and kinetic data confirmed that MBC@poly (AAm-ChCl) had the strongest adsorption capacity, and the order of adsorption capacity is as follow: MBC@poly(AAm-ChCl) > MBC@poly(AA-ChCl) > MBC@poly(MAA-ChCl), which also revealed that the adsorption was heterogeneous multi-layer chemisorption. The findings of the characterizations manifested that MBC@poly(AAm-ChCl) was the optimal adsorbent owning to its higher nitrogen content, resulting in the formation of a greater number of hydrogen bonds. Due to the strong hydrogen bonding effect of CO and -NH2 functional groups, MBC@poly(AAm-ChCl) exhibited the high selectivity towards MDMA under the coexistence of multiple chemical substances, and excellent adsorption performance over the pH range of 4-11. Urea as a hydrogen bond inhibitor further confirmed MBC@poly(AAm-ChCl) had high-density active hydrogen bonding sites. Furthermore, utilizing density functional theory (DFT) for simulating adsorption both before and after the process verified that the high selectivity of MBC@poly(AAm-ChCl) attributed to the formation of the dual-configured hydrogen bonds. This study provides support for the production of highly selective biochar for use in pretreatment during drug detection.


Assuntos
Carvão Vegetal , Ligação de Hidrogênio , N-Metil-3,4-Metilenodioxianfetamina , Carvão Vegetal/química , N-Metil-3,4-Metilenodioxianfetamina/química , Adsorção , Solventes Eutéticos Profundos/química , Poluentes Químicos da Água/química , Cinética
4.
Chemosphere ; 323: 138276, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36863627

RESUMO

The efficient and selective removal of amphetamine (AMP) from water bodies is significant for environmental remediation. In this study, a novel strategy for screening deep eutectic solvent (DES) functional monomers was proposed based on density functional theory (DFT) calculations. Using magnetic GO/ZIF-67 (ZMG) as substrates, three DES-functionalized adsorbents (ZMG-BA, ZMG-FA, and ZMG-PA) were successfully synthesized. The isothermal results showed that the DES-functionalized materials introduced more adsorption sites and mainly contributed to the formation of hydrogen bonds. The order of the maximum adsorption capacity (Qm) was as follows: ZMG-BA (732.110 µg⋅g-1) > ZMG-FA (636.518 µg⋅g-1) > ZMG-PA (564.618 µg⋅g-1) > ZMG (489.913 µg⋅g-1). The adsorption rate of AMP on ZMG-BA was the highest (98.1%) at pH 11, which could be explained by the less protonation of -NH2 from AMP being more favorable for forming hydrogen bonds with the -COOH of ZMG-BA. The strongest affinity of the -COOH of ZMG-BA for AMP was reflected in the most hydrogen bonds and the shortest bond length. The hydrogen bonding adsorption mechanism was fully explained by experimental characterization (FT-IR, XPS) and DFT calculations. Frontier Molecular Orbital (FMO) calculations showed that ZMG-BA had the lowest HOMO-LUMO energy gap (Egap), the highest chemical activity and the best adsorption capability. The experimental results agreed with the results of theoretical calculations, proving the validity of the functional monomer screening method. This research offered fresh suggestions for the functionalized modification of carbon nanomaterials to achieve effective and selective adsorption for psychoactive substances.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Ligação de Hidrogênio , Solventes Eutéticos Profundos , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química , Anfetaminas , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA