Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38616703

RESUMO

Na3V2(PO4)2F3 (NVPF) has been regarded as a favorable cathode for sodium-ion batteries (SIBs) due to its high voltage and stable structure. However, the limited electronic conductivity restricts its rate performance. NVPF@reduced graphene oxide (rGO) was synthesized by a facile microwave-assisted hydrothermal approach with subsequent calcination to shorten the hydrothermal time. NVPF nanocuboids with sizes of 50-150 nm distributed on rGO can be obtained, delivering excellent electrochemical performance such as a longevity life (a high capacity retention of 85.6% after 7000 cycles at 10 C) and distinguished rate capability (116 mAh g-1 at 50 C with a short discharging/charging time of 1.2 min). The full battery with a Cu2Se anode represents a capacity of 116 mAh g-1 at 0.2 A g-1. The introduction of rGO can augment the electronic conductivity and advance the Na+ diffusion speed, boosting the cycling and rate capability. Besides, the small lattice change (3.3%) and high structural reversibility during the phase transition process between Na3V2(PO4)2F3 and NaV2(PO4)2F3 testified by in situ X-ray diffraction are also advantageous for Na storage behavior. This work furnishes a simple method to synthesize polyanionic cathodes with ultrahigh rate and ultralong lifespan for fast-charging SIBs.

2.
J Colloid Interface Sci ; 601: 669-677, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34091314

RESUMO

A facile "carbon quantum dots glue" strategy for the fabrication of honeycomb-like carbon quantum dots/nickel sulphide network arrays on Ni foam surface is successfully demonstrated. This design realizes the immobilization of nanosheet arrays and maintains a strong adhesion to the collector, forming a three-dimensional (3D) honeycomb-like architecture. Thanks to the unique structural advantages, the resulting bind-free electrode with high active mass loading of 6.16 mg cm-2 still exhibits a superior specific capacitance of 1130F g-1 at 2 A g-1, and maintains 80% of the initial capacitance even at 10 A g-1 after 3000 cycles. Furthermore, the assembled asymmetrical supercapacitor delivers an energy density of 18.8 Wh kg-1 at a power density of 134 W kg-1, and outstanding cycling stability (100% of initial capacitance retention after 5000 cycles at 5 mA cm-2). These impressive results indicate a new perspective to design various binder-free electrodes for electrochemical energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA