Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177776

RESUMO

The leaf phenotypic traits of plants have a significant impact on the efficiency of canopy photosynthesis. However, traditional methods such as destructive sampling will hinder the continuous monitoring of plant growth, while manual measurements in the field are both time-consuming and laborious. Nondestructive and accurate measurements of leaf phenotypic parameters can be achieved through the use of 3D canopy models and object segmentation techniques. This paper proposed an automatic branch-leaf segmentation pipeline based on lidar point cloud and conducted the automatic measurement of leaf inclination angle, length, width, and area, using pear canopy as an example. Firstly, a three-dimensional model using a lidar point cloud was established using SCENE software. Next, 305 pear tree branches were manually divided into branch points and leaf points, and 45 branch samples were selected as test data. Leaf points were further marked as 572 leaf instances on these test data. The PointNet++ model was used, with 260 point clouds as training input to carry out semantic segmentation of branches and leaves. Using the leaf point clouds in the test dataset as input, a single leaf instance was extracted by means of a mean shift clustering algorithm. Finally, based on the single leaf point cloud, the leaf inclination angle was calculated by plane fitting, while the leaf length, width, and area were calculated by midrib fitting and triangulation. The semantic segmentation model was tested on 45 branches, with a mean Precisionsem, mean Recallsem, mean F1-score, and mean Intersection over Union (IoU) of branches and leaves of 0.93, 0.94, 0.93, and 0.88, respectively. For single leaf extraction, the Precisionins, Recallins, and mean coverage (mCoV) were 0.89, 0.92, and 0.87, respectively. Using the proposed method, the estimated leaf inclination, length, width, and area of pear leaves showed a high correlation with manual measurements, with correlation coefficients of 0.94 (root mean squared error: 4.44°), 0.94 (root mean squared error: 0.43 cm), 0.91 (root mean squared error: 0.39 cm), and 0.93 (root mean squared error: 5.21 cm2), respectively. These results demonstrate that the method can automatically and accurately measure the phenotypic parameters of pear leaves. This has great significance for monitoring pear tree growth, simulating canopy photosynthesis, and optimizing orchard management.


Assuntos
Imageamento Tridimensional , Pyrus , Imageamento Tridimensional/métodos , Árvores , Plantas , Folhas de Planta
2.
Ecotoxicol Environ Saf ; 230: 113126, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34974359

RESUMO

Toluene is a typical anthropogenic pollutant that has profound impacts on air quality, climate change, and human health, but its sources and sinks over forests surrounding megacities remain unclear. The Nanling Mountains (NM) is a large subtropical forest and is adjacent to the Pearl River Delta (PRD) region, a well-known hotspot for toluene emissions in southern China. However, unexpectedly low toluene concentrations (0.16 ± 0.20 ppbv) were observed at a mountaintop site in NM during a typical photochemical period. A backward trajectory analysis categorized air masses received at the site into three groups, namely, air masses from the PRD, those from central China, and from clean areas. The results revealed more abundant toluene and its key oxidation products, for example, benzaldehyde in air masses mixed with urban plumes from the PRD. Furthermore, a more than three times faster degradation rate of toluene was found in this category of air masses, indicating more photochemical consumption in NM under PRD outflow disturbance. Compared to the categorized clean and central China plumes, the simulated OH peak level in the PRD plumes (15.8 ± 2.2 × 106 molecule cm-3) increased by approximately 30% and 55%, respectively, and was significantly higher than the reported values at other background sites worldwide. The degradation of toluene in the PRD plumes was most likely accelerated by increased atmospheric oxidative capacity, which was supported by isoprene ozonolysis reactions. Our results indicate that receptor forests around megacities are not only highly polluted by urban plumes, but also play key roles in environmental safety by accelerating the degradation rate of anthropogenic pollutants.

3.
Sci Total Environ ; 918: 170613, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307286

RESUMO

The photochemical loss of volatile organic compounds (VOCs) significantly alters the capturing source profiles in high-reactivity VOC species and results in an underestimation of secondary pollutants such as ozone (O3) and secondary organic aerosol (SOA). Utilising speciated VOC data from large petrochemical refineries, the research assesses the photochemical loss of various VOC species. Air samples from multiple sites revealed over 99 VOCs, with initial concentrations estimated via a photochemical age-based parameterisation method. The comparative analysis of initial and measured VOC values provided insights into the VOCs' photochemical degradation during transport. Findings highlight that the average photochemical loss of total VOCs (TVOCs) across different refinery process areas varied between 4.9 and 506.8 ppb, averaging 187.5 ± 128.7 ppb. Alkenes dominated the consumed VOCs at 83.1 %, followed by aromatic hydrocarbons (9.3 %), alkanes (6.1 %), and oxygenated VOCs (OVOCs) at 1.6 %. The average consumption-based ozone formation potential (OFP) and SOA formation potential (SOAP) were calculated at 1767.3 ± 1251.1 ppb and 2959.6 ± 2386.3 ppb, respectively. Alkenes, primarily isoprene, 1,3-butadiene, and acetylene, were the most significant contributors to OFP, ranging from 19.9 % to 95.5 %. Aromatic hydrocarbons, predominantly monocyclic aromatics like toluene, xylene, styrene, and n-dodecane, were the primary contributors to SOAP, accounting for 5.0 % to 81.3 %. This research underscores the significance of considering photochemical losses in VOCs for accurate secondary pollution assessment, particularly in high-reactivity VOC species. It also provides new detection methods and accurate data for the characterization, source analysis and chemical conversion of volatile organic compounds in the petroleum refining industry.

4.
Sci Total Environ ; 914: 169673, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199347

RESUMO

Formic acid (FA) and acetic acid (AA) are pivotal organic acids in the troposphere, significantly influencing atmospheric chemistry. However, their abundance and sources in the mountainous background atmosphere remain underexplored. We undertook continuous measurements of FA and AA in Nanling mountains, southern China, during autumn 2020 using a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS). Both acids registered higher concentrations than in other global high-altitude or forested locations, averaging at 0.89 (max: 3.91) and 0.95 (max: 3.52) ppbv for FA and AA, respectively. High concentrations of FA and AA in this forested background area arose from secondary formation and biomass burning, collectively contributing 71 % to 89 %. During episodes, FA and AA concentrations surged 2-3 times, owing to the enhanced atmospheric oxidation capacity. The secondary FA production was predominantly due to isoprene oxidation among the VOC precursors studied. However, observed inconsistencies between calculated and actual FA concentrations suggest overlooked precursors or mechanisms warranting further investigation. Our findings can enhance the understanding of organic acid characteristics and the interplay of biogenic and anthropogenic sources in the background atmosphere.

5.
Sci Total Environ ; 931: 172707, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657816

RESUMO

Formaldehyde (HCHO) is one of the key indicators of severe photochemical pollution and strong atmospheric oxidation capacity in southern China. However, current information on the origins of regional HCHO and the impacts of polluted air masses remains scarce and unclear. In this study, an intensive observation of HCHO was conducted at a mountainous background site in southern China during typical photochemical pollution episodes. The concentrations of HCHO reached up to 6.14 ppbv and averaged at 2.68 ± 1.11 ppbv. Source appointment using a photochemical age-based parameterization method revealed significant contributions of secondary formation (50 %) and biomass burning (42 %). Meanwhile, under the influence of the East Asian Winter Monsoon, polluted air masses from central and western China can significantly increase the regional HCHO levels. The simulation results adopting the Rapid Adaptive Optimization Model for Atmospheric Chemistry model further demonstrated that the intrusion of active anthropogenic pollutants (e.g., small-molecule alkenes) can accelerate the net production rate of HCHO, particularly through BVOC-oxidation pathways. This study suggests a potential enhanced mechanism of HCHO production resulting from anthropogenic-biogenic interactions. It highlights that polluted air masses carrying abundant HCHO from upwind areas may facilitate severe photochemical pollution in the Greater Bay Area.

6.
Sci Total Environ ; 903: 166192, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567283

RESUMO

Aerosol acidity plays a crucial role in atmospheric physicochemical processes, climate change and human health, particularly in the formation of secondary organic aerosols (SOA). However, understanding the characteristics and driving factors of aerosol acidity in background mountains has been limited. In this study, we conducted intensive field measurements in the Nanling mountains during the dry and wet seasons to analyze aerosol pH characteristics and their driving factors using sensitivity tests. The mean aerosol pH in the background mountains was found to be 2.68 ± 0.55, with values ranging from 0.38 to 4.44, significantly lower than predicted values in northern China. Sensitivity tests revealed that aerosol acidity in the background atmosphere was more responsive to dominant chemical species (T-NH3 (= NH4+ + NH3) and SO42-) rather than relative humidity and temperature. Additionally, we observed that sulfate and ammonium, transported occasionally by dryer northern air masses, had a substantial impact on decreasing aerosol pH at the site. Similar to the southeastern United States, NH4+/NH3 also dominated the total buffer capacity of aerosol acidity in the Nanling mountains. The strong aerosol acidity in this area is expected to have adverse effects on regional air quality and climate by enhancing SOA formation and regulating the dry deposition of inorganic reactive nitrogen.

7.
Sci Total Environ ; 806(Pt 4): 150804, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653468

RESUMO

Imidazoles are important constituents in atmospheric brown carbon and have gained increasing attention in the past decade. Although imidazoles have been studied widely in laboratories, the sparse field observations severely limit the understanding of imidazole's abundance and sources in the atmosphere. In this study, we measured particle-bound imidazoles and their precursors at a background forest site in the Nanling Mountains of southern China. The average concentration of imidazoles (4.17 ± 3.76 ng/m3) was found to be significantly higher than other background sites worldwide. Further analyses revealed that a majority of imidazoles (59.1%) at the site originated from secondary formation through reactions of dicarbonyls (e.g., glyoxal and methylglyoxal) and reduced nitrogen species, with relatively minor contributions from regional transport (32.8%) and biomass burning (8.1%). In addition, the key factors influencing secondary formation of imidazoles, such as relative humidity, water-soluble inorganic ions, and pH, were analyzed. Our results indicated that the secondary formation of imidazoles can be greatly enhanced under high humidity conditions, particularly during fog events. Overall, this study offers valuable insights into potential sources and influencing factors of ambient imidazoles in background atmospheres.


Assuntos
Poluentes Atmosféricos , Imidazóis , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Carbono/análise , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
8.
Sci Total Environ ; 824: 153782, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35183643

RESUMO

Glyoxal (Gly) and methylglyoxal (Mgly) are the intermediate products of several volatile organic compounds (VOCs) as well as the precursors of brown carbon and may play key roles in photochemical pollution and regional climate change in the Tibetan Plateau (TP). However, their sources and atmospheric behaviors in the TP remain unclear. During the second Tibetan Plateau Scientific Expedition and Research in the summer of 2020, the concentrations of Gly (0.40 ± 0.30 ppbv) and Mgly (0.57 ± 0.16 ppbv) observed in Lhasa, the most densely populated city in the TP, had increased by 20 and 15 times, respectively, compared to those measured a decade previously. Owing to the strong solar radiation, secondary formations are the dominant sources of both Gly (71%) and Mgly (62%) in Lhasa. In addition, primary anthropogenic sources also play important roles by emitting Gly and Mgly directly and providing abundant precursors (e.g., aromatics). During ozone pollution episodes, local anthropogenic sources (industries, vehicles, solvent usage, and combustion activities) contributed up to 41% and 45% in Gly and Mgly levels, respectively. During non-episode periods, anthropogenic emissions originating from the south of Himalayas also have non-negligible contributions. Our results suggest that in the previous decade, anthropogenic emissions have elevated the levels of Gly and Mgly in the TP dramatically. This study has important implications for understanding the impact of human activities on air quality and climate change in this ecologically fragile area.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Glioxal/análise , Humanos , Aldeído Pirúvico/análise , Tibet , Compostos Orgânicos Voláteis/análise
9.
Sci Total Environ ; 672: 869-882, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30978549

RESUMO

The dicarbonyls glyoxal (Gly) and methylglyoxal (Mgly) are key tracers for the oxidation of volatile organic compounds (VOCs) in the atmosphere, but their atmospheric chemistry in remote forest environments is not well understood. A study was carried out during Jul. 31-Nov. 5 of 2016 at the summit of Mt. Tianjing (1690 m.a.s.l.), a remote mountaintop site in southern China, to measure the levels of Gly and Mgly and explore their sources and fate. During the study period, the average mixing ratios of Gly and Mgly were 509 ±â€¯31 pptv and 340 ±â€¯32 pptv, respectively, with the Gly/Mgly ratios averaging 1.8 ±â€¯0.2. Both the dicarbonyl concentrations and the Gly/Mgly ratios were significantly higher than those observed in other background sites. Production yield calculations and meteorological data analysis indicate that high levels of Gly and Mgly observed at the study site were largely a combined result of rapid in-situ formation and regional transport by prevailing winds. On average, in-situ formation from precursors is estimated to account for 67% of the observed Mgly and about 9% of the observed Gly. There were significant changes in Gly and Mgly mixing ratios among different time periods when air masses from different source regions dominated, indicating contribution of regional transport to the observed dicarbonyl mixing ratios at the study site. Biogenic emissions in eastern China and anthropogenic emissions in the Pearl River Delta region were the two main sources responsible for the dicarbonyls observed at the site during most of the sampling period, but large-scale biomass burning in central China was also important in the late autumn, as supported by a backward trajectory analysis of fire spot data and the identification of biomass burning tracers. This study provides insights into the background atmospheric chemistry and the impact of biogenic and anthropogenic sources on the dicarbonyls speciation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA