Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Respir J ; 60(3)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35086828

RESUMO

Although DNA methylation has been recognised in the pathogenesis of idiopathic pulmonary fibrosis (IPF), the exact mechanisms are yet to be fully addressed. Herein, we demonstrate that lungs originated from IPF patients and mice after bleomycin (BLM)-induced pulmonary fibrosis are characterised by altered DNA methylation along with overexpression in myofibroblasts of methyl-CpG-binding domain 2 (MBD2), a reader responsible for interpreting DNA methylome-encoded information. Specifically, depletion of Mbd2 in fibroblasts or myofibroblasts protected mice from BLM-induced pulmonary fibrosis coupled with a significant reduction of fibroblast differentiation. Mechanistically, transforming growth factor (TGF)-ß1 induced a positive feedback regulatory loop between TGF-ß receptor I (TßRI), Smad3 and Mbd2, and erythroid differentiation regulator 1 (Erdr1). TGF-ß1 induced fibroblasts to undergo a global DNA hypermethylation along with Mbd2 overexpression in a TßRI/Smad3 dependent manner, and Mbd2 selectively bound to the methylated CpG DNA within the Erdr1 promoter to repress its expression, through which it enhanced TGF-ß/Smad signalling to promote differentiation of fibroblast into myofibroblast and exacerbate pulmonary fibrosis. Therefore, enhancing Erdr1 expression strikingly reversed established pulmonary fibrosis. Collectively, our data support that strategies aimed at silencing Mbd2 or increasing Erdr1 could be viable therapeutic approaches for prevention and treatment of pulmonary fibrosis in clinical settings.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Animais , Bleomicina/efeitos adversos , Diferenciação Celular , DNA , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Camundongos , Miofibroblastos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/efeitos adversos , Fatores de Crescimento Transformadores/metabolismo
2.
J Adv Res ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906325

RESUMO

INTRODUCTION: Pulmonary fibrosis (PF) is a fatal fibrotic lung disease without any options to halt disease progression. Feasible evidence suggests that aberrant metabolism of amino acids may play a role in the pathoetiology of PF. However, the exact impact of kynurenine (Kyn), a metabolite derived from tryptophan (Trp) on PF is yet to be addressed. OBJECTIVES: This study aims to elucidate the role of kynurenine in both the onset and advancement of PF. METHODS: Liquid chromatography-tandem mass spectrometry was employed to assess Kyn levels in patients with idiopathic PF and PF associated with Sjögren's syndrome. Additionally, a mouse model of PF induced by bleomycin was utilized to study the impact of Kyn administration. Furthermore, cell models treated with TGF-ß1 were used to explore the mechanism by which Kyn inhibits fibroblast functions. RESULTS: We demonstrated that high levels of Kyn are a clinical feature in both idiopathic PF patients and primary Sjögren syndrome associated PF patients. Further studies illustrated that Kyn served as a braking molecule to suppress fibroblast functionality, thereby protecting mice from bleomycin-induced lung fibrosis. The protective effects depend on AHR, in which Kyn induces AHR nuclear translocation, where it upregulates PTEN expression to blunt TGF-ß mediated AKT/mTOR signaling in fibroblasts. However, in fibrotic microenviroment, the expression of AHR is repressed by methyl-CpG-binding domain 2 (MBD2), a reader interpreting the effect of DNA methylation, which results in a significantly reduced sensitivity of Kyn to fibroblasts. Therefore, exogenous administration of Kyn substantially reversed established PF. CONCLUSION: Our studies not only highlighted a critical role of Trp metabolism in PF pathogenesis, but also provided compelling evidence suggesting that Kyn could serve as a promising metabolite against PF.

3.
Cell Death Dis ; 14(5): 303, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142578

RESUMO

Despite past extensive studies, the pathoetiologies underlying tumor metastasis remain poorly understood, which renders its treatment largely unsuccessful. The methyl-CpG-binding domain 2 (MBD2), a "reader" to interpret DNA methylome-encoded information, has been noted to be involved in the development of certain types of tumors, while its exact impact on tumor metastasis remains elusive. Herein we demonstrated that patients with LUAD metastasis were highly correlated with enhanced MBD2 expression. Therefore, knockdown of MBD2 significantly attenuated the migration and invasion of LUAD cells (A549 and H1975 cell lines) coupled with attenuated epithelial-mesenchymal transition (EMT). Moreover, similar results were observed in other types of tumor cells (B16F10). Mechanistically, MBD2 selectively bound to the methylated CpG DNA within the DDB2 promoter, by which MBD2 repressed DDB2 expression to promote tumor metastasis. As a result, administration of MBD2 siRNA-loaded liposomes remarkably suppressed EMT along with attenuated tumor metastasis in the B16F10 tumor-bearing mice. Collectively, our study indicates that MBD2 could be a promising prognostic marker for tumor metastasis, while administration of MBD2 siRNA-loaded liposomes could be a viable therapeutic approach against tumor metastasis in clinical settings.


Assuntos
Proteínas de Ligação a DNA , Neoplasias , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Metilação de DNA/genética , Lipossomos , Linhagem Celular , RNA Interferente Pequeno/metabolismo , Neoplasias/genética
4.
Bioeng Transl Med ; 7(2): e10280, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600643

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by the infiltration of macrophages in the fibrotic region. Currently, no therapeutic strategies effectively control disease progression, and the 5-year mortality of patients after diagnosis is unacceptably high. Thus, developing an effective and safe treatment for IPF is urgently needed. The present study illustrated that methyl-CpG-binding protein 2 (MECP2), a protein responsible for the interpretation of DNA methylome-encoded information, was abnormally expressed in lung and bronchoalveolar lavage fluid samples of IPF patients and mice with onset of pulmonary fibrosis. And further studies verified that the overexpression of MECP2 occurred mainly in macrophages. Inhibition of Mecp2 expression in macrophages robustly abrogated alternatively activated macrophage (M2) polarization by regulating interferon regulatory factor 4 expression. Accordingly, cationic liposomes loading Mecp2 small interfering RNA (siRNA) were raised for the treatment of pulmonary fibrosis. It was noted that the liposomes accumulated in the fibrotic region after intratracheal injection, especially in macrophages. In addition, intratracheal administration of Mecp2 siRNA-loaded liposomes significantly reversed the established pulmonary fibrosis with few side-effects and high safety coefficients. Collectively, these results are essential not only for further understanding the DNA methylation in pathogenesis of IPF but also for providing a potent therapeutic strategy for IPF treatment in the clinic practice.

5.
Front Immunol ; 13: 930103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090987

RESUMO

Objective: To address the role of methyl-CpG-binding domain 2 (MBD2) in the pathogenesis of asthma and its potential as a target for the asthmatic therapy. Methods: Studies were conducted in asthmatic patients and macrophage-specific Mbd2 knockout mice to dissect the role of MBD2 in asthma pathogenesis. Additionally, RNAi-based therapy with Mbd2 siRNA-loaded liposomes was conducted in an ovalbumin (OVA)-induced allergic airway inflammation mouse model. Results: Asthmatic patients and mice challenged with OVA exhibited upregulated MBD2 expression in macrophages, especially in alternatively activated (M2) macrophages. In particular, macrophage-specific knockout of Mbd2 protected mice from OVA-induced allergic airway inflammation and suppressed the M2 program. Notably, intratracheal administration of liposomes carrying Mbd2 siRNA decreased the expression of Mbd2 and prevented OVA-induced allergic airway inflammation in mice, as indicated by the attenuated airway inflammation and mucus production. Conclusions: The above data indicate that Mbd2 implicates in the pathogenesis of asthma predominantly by regulating the polarization of M2 macrophages, which supports that Mbd2 could be a viable target for treatment of asthma in clinical settings.


Assuntos
Asma , Proteínas de Ligação a DNA , Lipossomos , Macrófagos , RNA Interferente Pequeno , Animais , Asma/induzido quimicamente , Asma/genética , Asma/metabolismo , Asma/prevenção & controle , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Lipossomos/administração & dosagem , Lipossomos/uso terapêutico , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Ovalbumina/efeitos adversos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico
6.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277324

RESUMO

Despite past extensive studies, the mechanisms underlying pulmonary fibrosis (PF) still remain poorly understood. Here, we demonstrated that lungs originating from different types of patients with PF, including coronavirus disease 2019, systemic sclerosis-associated interstitial lung disease, and idiopathic PF, and from mice following bleomycin (BLM)-induced PF are characterized by the altered methyl-CpG-binding domain 2 (MBD2) expression in macrophages. Depletion of Mbd2 in macrophages protected mice against BLM-induced PF. Mbd2 deficiency significantly attenuated transforming growth factor-ß1 (TGF-ß1) production and reduced M2 macrophage accumulation in the lung following BLM induction. Mechanistically, Mbd2 selectively bound to the Ship promoter in macrophages, by which it repressed Ship expression and enhanced PI3K/Akt signaling to promote the macrophage M2 program. Therefore, intratracheal administration of liposomes loaded with Mbd2 siRNA protected mice from BLM-induced lung injuries and fibrosis. Together, our data support the possibility that MBD2 could be a viable target against PF in clinical settings.


Assuntos
COVID-19/metabolismo , Proteínas de Ligação a DNA/metabolismo , Macrófagos/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Bleomicina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lipossomos/química , Doenças Pulmonares Intersticiais/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/virologia , RNA Interferente Pequeno/metabolismo , Escleroderma Sistêmico/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA