Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Immunol ; 212(9): 1442-1449, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436421

RESUMO

Protein arginine methyltransferases (PRMTs) modify diverse protein targets and regulate numerous cellular processes; yet, their contributions to individual effector T cell responses during infections are incompletely understood. In this study, we identify PRMT5 as a critical regulator of CD4+ T follicular helper cell (Tfh) responses during influenza virus infection in mice. Conditional PRMT5 deletion in murine T cells results in an almost complete ablation of both Tfh and T follicular regulatory populations and, consequently, reduced B cell activation and influenza-specific Ab production. Supporting a potential mechanism, we observe elevated surface expression of IL-2Rα on non-T regulatory effector PRMT5-deficient T cells. Notably, IL-2 signaling is known to negatively impact Tfh differentiation. Collectively, our findings identify PRMT5 as a prominent regulator of Tfh programming, with potential causal links to IL-2 signaling.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Humanos , Camundongos , Diferenciação Celular , Centro Germinativo , Interleucina-2/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Células T Auxiliares Foliculares
2.
Immunity ; 44(4): 875-88, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27096318

RESUMO

Gut microbiota profoundly affect gut and systemic diseases, but the mechanism whereby microbiota affect systemic diseases is unclear. It is not known whether specific microbiota regulate T follicular helper (Tfh) cells, whose excessive responses can inflict antibody-mediated autoimmunity. Using the K/BxN autoimmune arthritis model, we demonstrated that Peyer's patch (PP) Tfh cells were essential for gut commensal segmented filamentous bacteria (SFB)-induced systemic arthritis despite the production of auto-antibodies predominantly occurring in systemic lymphoid tissues, not PPs. We determined that SFB, by driving differentiation and egress of PP Tfh cells into systemic sites, boosted systemic Tfh cell and auto-antibody responses that exacerbated arthritis. SFB induced PP Tfh cell differentiation by limiting the access of interleukin 2 to CD4(+) T cells, thereby enhancing Tfh cell master regulator Bcl-6 in a dendritic cell-dependent manner. These findings showed that gut microbiota remotely regulated a systemic disease by driving the induction and egress of gut Tfh cells.


Assuntos
Artrite/imunologia , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Microbioma Gastrointestinal/imunologia , Nódulos Linfáticos Agregados/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/imunologia , Células Dendríticas/imunologia , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Nódulos Linfáticos Agregados/citologia , Proteínas Proto-Oncogênicas c-bcl-6 , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T Auxiliares-Indutores/citologia
3.
J Neurosci ; 42(2): 325-348, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819339

RESUMO

Globally, more than 67 million people are living with the effects of ischemic stroke. Importantly, many stroke survivors develop a chronic inflammatory response that may contribute to cognitive impairment, a common and debilitating sequela of stroke that is insufficiently studied and currently untreatable. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD) is an FDA-approved cyclic oligosaccharide that can solubilize and entrap lipophilic substances. The goal of the present study was to determine whether the repeated administration of HPßCD curtails the chronic inflammatory response to stroke by reducing lipid accumulation within stroke infarcts in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we subcutaneously injected young adult and aged male mice with vehicle or HPßCD 3 times per week, with treatment beginning 1 week after stroke. We evaluated mice at 7 weeks following stroke using immunostaining, RNA sequencing, lipidomic, and behavioral analyses. Chronic stroke infarct and peri-infarct regions of HPßCD-treated mice were characterized by an upregulation of genes involved in lipid metabolism and a downregulation of genes involved in innate and adaptive immunity, reactive astrogliosis, and chemotaxis. Correspondingly, HPßCD reduced the accumulation of lipid droplets, T lymphocytes, B lymphocytes, and plasma cells in stroke infarcts. Repeated administration of HPßCD also preserved NeuN immunoreactivity in the striatum and thalamus and c-Fos immunoreactivity in hippocampal regions. Additionally, HPßCD improved recovery through the protection of hippocampal-dependent spatial working memory and reduction of impulsivity. These results indicate that systemic HPßCD treatment following stroke attenuates chronic inflammation and secondary neurodegeneration and prevents poststroke cognitive decline.SIGNIFICANCE STATEMENT Dementia is a common and debilitating sequela of stroke. Currently, there are no available treatments for poststroke dementia. Our study shows that lipid metabolism is disrupted in chronic stroke infarcts, which causes an accumulation of uncleared lipid debris and correlates with a chronic inflammatory response. To our knowledge, these substantial changes in lipid homeostasis have not been previously recognized or investigated in the context of ischemic stroke. We also provide a proof of principle that solubilizing and entrapping lipophilic substances using HPßCD could be an effective strategy for treating chronic inflammation after stroke and other CNS injuries. We propose that using HPßCD for the prevention of poststroke dementia could improve recovery and increase long-term quality of life in stroke sufferers.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Encéfalo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Inflamação/tratamento farmacológico , Fatores Etários , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resultado do Tratamento
4.
J Immunol ; 206(5): 941-952, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462137

RESUMO

Autoantibodies play a major pathogenic role in rheumatoid arthritis. T follicular helper (Tfh) cells promote germinal center B cell and Ab responses. Excessive Tfh cell responses lead to autoimmunity, and therefore, counterregulation is crucial. T follicular regulatory (Tfr) cells, mainly differentiated from T regulatory cells, can negatively regulate Tfh and germinal center B cells. Dysbiosis is involved in rheumatoid arthritis's pathogenesis. We previously demonstrated that the gut microbiota, segmented filamentous bacteria (SFB), promote autoimmune arthritis by inducing Tfh cells. However, little is known regarding whether gut microbiota influence systemic (nongut) Tfr cells, impacting gut-distal autoimmunity. In this study, using SFB in autoimmune arthritic K/BxN mice, we demonstrated that SFB-induced arthritis is linked to the reduction of Tfr cells' CTLA-4, the key regulatory molecule of Tfr cells. This SFB-mediated CTLA-4 reduction is associated with increased Tfr glycolytic activity, and glycolytic inhibition increases Tfr cells' CTLA-4 levels and reduces arthritis. The surface expression of CTLA-4 is tied to TCR signaling strength, and we discovered that SFB-reduced CTLA-4 is associated with a reduction of Nur77, an indicator of TCR signaling strength. Nur77 is known for repressing glycolytic activity. Using a loss-of-function study, we demonstrated that Nur77+/- haplodeficiency increases glycolysis and reduces CTLA-4 on Tfr cells, which is associated with increased arthritis and anti-glucose-6-phosphate isomerase titers. Tfr-specific deletion (KRN.Foxp3CreBcl-6fl/fl) in autoimmune condition reveals that Tfr cells repress arthritis, Tfh cells, and autoantibody responses and that SFB can mitigate this repression. Overall, these findings demonstrated that gut microbiota distally impact systemic autoimmunity by fine-tuning Tfr cells.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/microbiologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Autoimunidade/imunologia , Microbioma Gastrointestinal/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoanticorpos/imunologia , Bactérias/imunologia , Antígeno CTLA-4/imunologia , Diferenciação Celular/imunologia , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
5.
Infect Immun ; 90(4): e0059721, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311543

RESUMO

Streptococcus pneumoniae is a Gram-positive, encapsulated bacterium that is a significant cause of disease burden in pediatric and elderly populations. The rise in unencapsulated disease-causing strains and antimicrobial resistance in S. pneumoniae has increased the need for developing new antimicrobial strategies. Recent work by our laboratory has identified N,N-dimethyldithiocarbamate (DMDC) as a copper-dependent antimicrobial against bacterial, fungal, and parasitic pathogens. As a bactericidal antibiotic against S. pneumoniae, DMDC's ability to work as a copper-dependent antibiotic and its ability to work in vivo warranted further investigation. Here, our group studied the mechanisms of action of DMDC under various medium and excess-metal conditions and investigated DMDC's interactions with the innate immune system in vitro and in vivo. Of note, we found that DMDC plus copper significantly increased the internal copper concentration, hydrogen peroxide stress, nitric oxide stress, and the in vitro macrophage killing efficiency and decreased capsule. Furthermore, we found that in vivo DMDC treatment increased the quantity of innate immune cells in the lung during infection. Taken together, this study provides mechanistic insights regarding DMDC's activity as an antibiotic at the host-pathogen interface.


Assuntos
Anti-Infecciosos , Infecções Pneumocócicas , Idoso , Antibacterianos , Anti-Infecciosos/farmacologia , Criança , Cobre , Dimetilditiocarbamato , Humanos , Macrófagos , Streptococcus pneumoniae
6.
Immunology ; 156(4): 305-318, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30560993

RESUMO

The immune system is essential for maintaining a delicate balance between eliminating pathogens and maintaining tolerance to self-tissues to avoid autoimmunity. An enormous and complex community of gut microbiota provides essential health benefits to the host, particularly by regulating immune homeostasis. Many of the metabolites derived from commensals can impact host health by directly regulating the immune system. Many autoimmune diseases arise from an imbalance between pathogenic effector T cells and regulatory T (Treg) cells. Recent interest has emerged in understanding how cross-talk between gut microbiota and the host immune system promotes autoimmune development by controlling the differentiation and plasticity of T helper and Treg cells. At the molecular level, our recent study, along with others, demonstrates that asymptomatic colonization by commensal bacteria in the gut is capable of triggering autoimmune disease by molecular mimicking self-antigen and skewing the expression of dual T-cell receptors on T cells. Dysbiosis, an imbalance of the gut microbiota, is involved in autoimmune development in both mice and humans. Although it is well known that dysbiosis can impact diseases occurring within the gut, growing literature suggests that dysbiosis also causes the development of gut-distal/non-gut autoimmunity. In this review, we discuss recent advances in understanding the potential molecular mechanisms whereby gut microbiota induces autoimmunity, and the evidence that the gut microbiota triggers gut-distal autoimmune diseases.


Assuntos
Autoimunidade/imunologia , Microbioma Gastrointestinal/imunologia , Linfócitos T/imunologia , Animais , Disbiose/imunologia , Humanos
7.
Immunity ; 32(6): 815-27, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20620945

RESUMO

Commensal microbes can have a substantial impact on autoimmune disorders, but the underlying molecular and cellular mechanisms remain largely unexplored. We report that autoimmune arthritis was strongly attenuated in the K/BxN mouse model under germ-free (GF) conditions, accompanied by reductions in serum autoantibody titers, splenic autoantibody-secreting cells, germinal centers, and the splenic T helper 17 (Th17) cell population. Neutralization of interleukin-17 prevented arthritis development in specific-pathogen-free K/BxN mice resulting from a direct effect of this cytokine on B cells to inhibit germinal center formation. The systemic deficiencies of the GF animals reflected a loss of Th17 cells from the small intestinal lamina propria. Introduction of a single gut-residing species, segmented filamentous bacteria, into GF animals reinstated the lamina propria Th17 cell compartment and production of autoantibodies, and arthritis rapidly ensued. Thus, a single commensal microbe, via its ability to promote a specific Th cell subset, can drive an autoimmune disease.


Assuntos
Artrite Reumatoide/imunologia , Bactérias/imunologia , Interleucina-17/imunologia , Intestinos/microbiologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Artrite Experimental/imunologia , Artrite Experimental/microbiologia , Artrite Reumatoide/microbiologia , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Immunol ; 198(5): 1855-1864, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130500

RESUMO

Rheumatoid arthritis is an autoimmune disorder that affects the joints and other organs. Pulmonary complications contribute significantly to rheumatoid arthritis mortality. Retinoic acid and its synthetic compound AM80 play roles in immunoregulation but their effect on mucosal autoimmunity remains largely unknown. T follicular helper (Tfh) and Th17 cells are known to promote inflammation and autoantibody production. Using the K/BxN autoimmune arthritis model, we elucidate a novel mechanism whereby oral AM80 administration suppressed lung mucosa-associated Tfh and autoantibody responses by increasing the gut-homing α4ß7 integrin expression on Tfh cells. This diverted Tfh cells from systemic (non-gut) inflamed sites such as the lung into the gut-associated lymphoid tissues, Peyer's patches, and thus reduced the systemic autoantibodies. AM80 also inhibited the lung Th17 response. AM80's effect in the lungs was readily applied to the joints as AM80 also inhibited Tfh and Th17 responses in the spleen, the major autoantibody producing site known to correlate with K/BxN arthritis severity. Finally, we used anti-ß7 treatment as an alternative approach, demonstrating that manipulating T cell migration between the gut and systemic sites alters the systemic disease outcome. The ß7 blockade prevented both Tfh and Th17 cells from entering the non-immunopathogenic site, the gut, and retained these T effector cells in the systemic sites, leading to augmented arthritis. These data suggest a dual beneficial effect of AM80, targeting both Tfh and Th17 cells, and warrant strict safety monitoring of gut-homing perturbing agents used in treating intestinal inflammation.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Autoimunidade/efeitos dos fármacos , Benzoatos/uso terapêutico , Pulmão/imunologia , Tetra-Hidronaftalenos/uso terapêutico , Células Th17/imunologia , Animais , Artrite Reumatoide/imunologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/prevenção & controle , Autoimunidade/imunologia , Benzoatos/administração & dosagem , Benzoatos/efeitos adversos , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Integrinas/deficiência , Integrinas/genética , Integrinas/imunologia , Intestinos/imunologia , Pulmão/citologia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Nódulos Linfáticos Agregados/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Tetra-Hidronaftalenos/administração & dosagem , Tetra-Hidronaftalenos/efeitos adversos
9.
Proc Natl Acad Sci U S A ; 113(50): E8141-E8150, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911839

RESUMO

Th17 cells accrue in the intestine in response to particular microbes. In rodents, segmented filamentous bacteria (SFB) induce intestinal Th17 cells, but analogously functioning microbes in humans remain undefined. Here, we identified human symbiont bacterial species, in particular Bifidobacterium adolescentis, that could, alone, induce Th17 cells in the murine intestine. Similar to SFB, B. adolescentis was closely associated with the gut epithelium and engendered cognate Th17 cells without attendant inflammation. However, B. adolescentis elicited a transcriptional program clearly distinct from that of SFB, suggesting an alternative mechanism of promoting Th17 cell accumulation. Inoculation of mice with B. adolescentis exacerbated autoimmune arthritis in the K/BxN mouse model. Several off-the-shelf probiotic preparations that include Bifidobacterium strains also drove intestinal Th17 cell accumulation.


Assuntos
Bifidobacterium adolescentis/imunologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Células Th17/imunologia , Animais , Artrite Experimental/etiologia , Artrite Experimental/imunologia , Artrite Experimental/microbiologia , Bifidobacterium adolescentis/isolamento & purificação , Feminino , Perfilação da Expressão Gênica , Vida Livre de Germes/genética , Vida Livre de Germes/imunologia , Humanos , Imunidade nas Mucosas , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Probióticos , Simbiose/genética , Simbiose/imunologia , Células Th17/citologia
10.
Hum Genet ; 133(8): 1041-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24781087

RESUMO

Athelia is a very rare entity that is defined by the absence of the nipple-areola complex. It can affect either sex and is mostly part of syndromes including other congenital or ectodermal anomalies, such as limb-mammary syndrome, scalp-ear-nipple syndrome, or ectodermal dysplasias. Here, we report on three children from two branches of an extended consanguineous Israeli Arab family, a girl and two boys, who presented with a spectrum of nipple anomalies ranging from unilateral hypothelia to bilateral athelia but no other consistently associated anomalies except a characteristic eyebrow shape. Using homozygosity mapping after single nucleotide polymorphism (SNP) array genotyping and candidate gene sequencing we identified a homozygous frameshift mutation in PTPRF as the likely cause of nipple anomalies in this family. PTPRF encodes a receptor-type protein phosphatase that localizes to adherens junctions and may be involved in the regulation of epithelial cell-cell contacts, peptide growth factor signaling, and the canonical Wnt pathway. Together with previous reports on female mutant Ptprf mice, which have a lactation defect, and disruption of one allele of PTPRF by a balanced translocation in a woman with amastia, our results indicate a key role for PTPRF in the development of the nipple-areola region.


Assuntos
Mama/anormalidades , Anormalidades Congênitas/etiologia , Mutação da Fase de Leitura/genética , Perfilação da Expressão Gênica , Homozigoto , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Adolescente , Adulto , Animais , Mama/patologia , Doenças Mamárias , Células Cultivadas , Criança , Pré-Escolar , Anormalidades Congênitas/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Estudo de Associação Genômica Ampla , Humanos , Lactente , Masculino , Camundongos , Mamilos/metabolismo , Mamilos/patologia , Linhagem , Polimorfismo de Nucleotídeo Único/genética
11.
Proc Natl Acad Sci U S A ; 108(28): 11548-53, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709219

RESUMO

Vertebrates typically harbor a rich gastrointestinal microbiota, which has coevolved with the host over millennia and is essential for several host physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T-helper cell type 17 (Th17) population in the small-intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17-dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type 1 diabetes in this prototypical, spontaneous model. There was a strong cosegregation of SFB positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T-cell compartments of the gut, pancreas, or systemic lymphoid tissues. Th17-signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4(+) T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, probably reflecting their variable dependence on different Th subsets.


Assuntos
Bactérias/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , Linfócitos T CD4-Positivos/imunologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Feminino , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Masculino , Metagenoma , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Células Th17/imunologia
12.
J Mammary Gland Biol Neoplasia ; 18(2): 121-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23674217

RESUMO

Having glands that secrete milk to nourish neonatal offspring characterizes all mammals. We provide a brief overview of the development and anatomy of nipples and mammary glands in monotremes, marsupials, and marine mammals, and focus on the nipples and mammary glands in terrestrial eutherian species. We first classify eutherians into three groups: the altricial, precocial, and arboreal types based on their rearing system. We then summarize the physiology of lactation and the cell biology of nipples with specific focus on comparing these in the mouse, cow, and human, which represent the three different groups. Finally we propose that the nipple is an example of specialized epidermis. As specialized epidermis, it is dependent the underlying stroma for development and maintenance in adult life. The development of the nipple and signaling pathways that regulate its formation are described.


Assuntos
Tegumento Comum/fisiologia , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Humanas/fisiologia , Mamilos/fisiologia , Animais , Feminino , Humanos , Tegumento Comum/anatomia & histologia , Tegumento Comum/crescimento & desenvolvimento , Lactação/fisiologia , Glândulas Mamárias Animais/anatomia & histologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Humanas/anatomia & histologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Mamilos/anatomia & histologia , Mamilos/crescimento & desenvolvimento
13.
Mol Cancer Ther ; 23(4): 421-435, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38030380

RESUMO

IL12 is a proinflammatory cytokine, that has shown promising antitumor activity in humans by promoting the recruitment and activation of immune cells in tumors. However, the systemic administration of IL12 has been accompanied by considerable toxicity, prompting interest in researching alternatives to drive preferential IL12 bioactivity in the tumor. Here, we have generated XTX301, a tumor-activated IL12 linked to the human Fc protein via a protease cleavable linker that is pharmacologically inactivated by an IL12 receptor subunit beta 2 masking domain. In vitro characterization demonstrates multiple matrix metalloproteases, as well as human primary tumors cultured as cell suspensions, can effectively activate XTX301. Intravenous administration of a mouse surrogate mXTX301 demonstrated significant tumor growth inhibition (TGI) in inflamed and non-inflamed mouse models without causing systemic toxicities. The superiority of mXTX301 in mediating TGI compared with non-activatable control molecules and the greater percentage of active mXTX301 in tumors versus other organs further confirms activation by the tumor microenvironment-associated proteases in vivo. Pharmacodynamic characterization shows tumor selective increases in inflammation and upregulation of immune-related genes involved in IFNγ cell signaling, antigen processing, presentation, and adaptive immune response. XTX301 was tolerated following four repeat doses up to 2.0 mg/kg in a nonhuman primate study; XTX301 exposures were substantially higher than those at the minimally efficacious dose in mice. Thus, XTX301 has the potential to achieve potent antitumor activity while widening the therapeutic index of IL12 treatment and is currently being evaluated in a phase I clinical trial.


Assuntos
Interleucina-12 , Neoplasias , Humanos , Camundongos , Animais , Interleucina-12/metabolismo , Neoplasias/tratamento farmacológico , Citocinas , Transdução de Sinais , Índice Terapêutico , Microambiente Tumoral
14.
J Exp Med ; 204(8): 1911-22, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17646407

RESUMO

Unmethylated CpG-oligodeoxynucleotides (ODNs) are generally thought of as potent adjuvants with considerable therapeutic potential to enhance immune responses against microbes and tumors. Surprisingly, certain so-called stimulatory CpG-ODNs strongly inhibited the effector phase of inflammatory arthritis in the K/BxN serum transfer system, either preventively or therapeutically. Also unexpected was that the inhibitory influence did not depend on the adaptive immune system cells mobilized in an immunostimulatory context. Instead, they relied on cells of the innate immune system, specifically on cross talk between CD8 alpha(+) dendritic cells and natural killer cells, resulting in suppression of neutrophil recruitment to the joint, orchestrated through interleukin-12 and interferon-gamma. These findings highlight potential applications of CpG-ODNs and downstream molecules as antiinflammatory agents.


Assuntos
Artrite/terapia , Ilhas de CpG , Células Dendríticas/citologia , Imunoterapia/métodos , Inflamação/terapia , Células Matadoras Naturais/citologia , Animais , Anti-Inflamatórios/farmacologia , Células Dendríticas/imunologia , Interferon gama/metabolismo , Interleucina-12/metabolismo , Células Matadoras Naturais/imunologia , Camundongos , Modelos Biológicos , Neutrófilos/metabolismo , Oligonucleotídeos/química , Transdução de Sinais
15.
Oncol Res ; 20(7): 303-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23879171

RESUMO

Epidermal growth factor receptor (EGFR) expression has been linked to progression of basal breast cancers. Many breast cancer cells harbor the EGFR and produce its family of ligands, suggesting they may participate in autocrine and paracrine signaling with cells of the tumor microenvironment. EGFR ligand expression was profiled in the basal breast cancer cell line MDA-231 where AREG, TGF-alpha, and HBEGF were the three ligands most highly expressed. Autocrine signaling was modulated through silencing or overexpression of these three ligands using lentiviral constructs and the impact measured using motility, proliferation, and cytokine expression assays. Changes in receptor phosphorylation and receptor turnover were examined. Knockdown of AREG or TGF-alpha in vitro resulted in decreased motility (p < 0.05) and decreased expression of macrophage chemoattractants. Overexpression of TGF-alpha increased motility and chemoattractant expression, whereas AREG did not. HBEGF modulation had no effect on any cellular behaviors. All the cells with altered ligand production were inoculated into female athymic nude mice to form mammary fat pad tumors, followed by immunohistochemical analysis for necrosis, angiogenesis, and macrophage recruitment. In vivo, knockdown of AREG or TGF-alpha increased survival (p < 0.001) while decreasing angiogenesis (p < 0.001), tumor growth (p < 0.001), and macrophage attraction (p < 0.001). Overexpression of AREG appeared to elicit a greater effect than TGF-alpha on mammary fat pad tumor growth by increasing angiogenesis (p < 0.001) and macrophage attraction to the tumor (p < 0.01). We propose these changes in mammary tumor growth were the result of increased recruitment of macrophages to the tumor by cells with altered autocrine EGFR signaling. We conclude that AREG and TGF-alpha were somewhat interchangeable in their effects on EGFR signaling; however, TGF-alpha had a greater effect in vitro and AREG had a greater effect in vivo.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores ErbB/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/imunologia , Fator de Crescimento Transformador alfa/metabolismo , Anfirregulina , Animais , Comunicação Autócrina/fisiologia , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Progressão da Doença , Família de Proteínas EGF , Feminino , Técnicas de Silenciamento de Genes , Humanos , Ligantes , Camundongos , Camundongos Nus , Neoplasia de Células Basais/imunologia , Neoplasia de Células Basais/metabolismo , Neoplasia de Células Basais/patologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
NAR Cancer ; 5(3): zcad039, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37519629

RESUMO

CCNE1 amplification is a common alteration in high-grade serous ovarian cancer and occurs in 15-20% of these tumors. These amplifications are mutually exclusive with homologous recombination deficiency, and, as they have intact homologous recombination, are intrinsically resistant to poly (ADP-ribose) polymerase inhibitors or chemotherapy agents. Understanding the molecular mechanisms that lead to this mutual exclusivity may reveal therapeutic vulnerabilities that could be leveraged in the clinic in this still underserved patient population. Here, we demonstrate that CCNE1-amplified high-grade serous ovarian cancer cells rely on homologous recombination to repair collapsed replication forks. Cyclin-dependent kinase 2, the canonical partner of cyclin E1, uniquely regulates homologous recombination in this genetic context, and as such cyclin-dependent kinase 2 inhibition synergizes with DNA damaging agents in vitro and in vivo. We demonstrate that combining a selective cyclin-dependent kinase 2 inhibitor with a DNA damaging agent could be a powerful tool in the clinic for high-grade serous ovarian cancer.

17.
Proc Natl Acad Sci U S A ; 106(51): 21789-94, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19955422

RESUMO

Rheumatoid arthritis is a T lymphocyte-mediated disorder, but the precise nature of T cell involvement remains unclear. In the K/BxN mouse model of inflammatory arthritis, T cells initiate disease by providing help to B cells to produce arthritogenic autoantibodies. Here, we have characterized an additional, nonhumoral role for T cells in promoting autoantibody-induced arthritis. Autoreactive KRN T cells introduced either by direct transfer or bone marrow transplantation into B-cell-deficient hosts enhanced K/BxN serum-transferred arthritis, an effect that was dependent on expression of the cognate MHC-molecule/peptide complex. The T cell influence was dependent on interleukin (IL)-17; in contrast, standard serum-transferred arthritis, unenhanced by the addition of T cells, was unaffected by IL-17 neutralization. An IL-17-producing population of transferred KRN T cells was identified and found to be supported by the cotransfer of arthritogenic autoantibodies. IL-17-producing KRN T cells were enriched in inflamed joints of K/BxN mice, suggesting either selective recruitment or preferential differentiation. These results demonstrate the potential for autoreactive T cells to play two roles in the development of arthritis, both driving the production of pathogenic autoantibodies and bolstering the subsequent inflammatory cascade dependent on the innate immune system.


Assuntos
Artrite/imunologia , Autoanticorpos/imunologia , Interleucina-17/biossíntese , Linfócitos T/metabolismo , Animais , Sangue , Diferenciação Celular , Camundongos , Camundongos Transgênicos , Testes de Neutralização , Linfócitos T/citologia , Linfócitos T/imunologia
18.
Nat Metab ; 4(10): 1322-1335, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36192601

RESUMO

γ-Aminobutyrate (GAB), the biochemical form of (GABA) γ-aminobutyric acid, participates in shaping physiological processes, including the immune response. How GAB metabolism is controlled to mediate such functions remains elusive. Here we show that GAB is one of the most abundant metabolites in CD4+ T helper 17 (TH17) and induced T regulatory (iTreg) cells. GAB functions as a bioenergetic and signalling gatekeeper by reciprocally controlling pro-inflammatory TH17 cell and anti-inflammatory iTreg cell differentiation through distinct mechanisms. 4-Aminobutyrate aminotransferase (ABAT) funnels GAB into the tricarboxylic acid (TCA) cycle to maximize carbon allocation in promoting TH17 cell differentiation. By contrast, the absence of ABAT activity in iTreg cells enables GAB to be exported to the extracellular environment where it acts as an autocrine signalling metabolite that promotes iTreg cell differentiation. Accordingly, ablation of ABAT activity in T cells protects against experimental autoimmune encephalomyelitis (EAE) progression. Conversely, ablation of GABAA receptor in T cells worsens EAE. Our results suggest that the cell-autonomous control of GAB on CD4+ T cells is bimodal and consists of the sequential action of two processes, ABAT-dependent mitochondrial anaplerosis and the receptor-dependent signalling response, both of which are required for T cell-mediated inflammation.


Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Animais , Células Th17/metabolismo , 4-Aminobutirato Transaminase/metabolismo , Receptores de GABA-A/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Metabolismo Energético , Aminobutiratos/metabolismo , Carbono/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácidos Tricarboxílicos/metabolismo
19.
Cell Host Microbe ; 29(3): 325-326, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33705703

RESUMO

In this COVID era, when many struggle to work remotely, methotrexate (MTX) has been doing so all along. In this issue of Cell Host & Microbe, Nayak et al. discover that MTX reduces immune activation due to off-target effects on the gut microbiota, potentially explaining MTX's anti-inflammatory effects.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Bactérias , Humanos , Metotrexato , SARS-CoV-2
20.
Nat Rev Rheumatol ; 17(4): 224-237, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674813

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disorder that primarily affects the joints. One hypothesis for the pathogenesis of RA is that disease begins at mucosal sites as a consequence of interactions between the mucosal immune system and an aberrant local microbiota, and then transitions to involve the synovial joints. Alterations in the composition of the microbial flora in the lungs, mouth and gut in individuals with preclinical and established RA suggest a role for mucosal dysbiosis in the development and perpetuation of RA, although establishing whether these alterations are the specific consequence of intestinal involvement in the setting of a systemic inflammatory process, or whether they represent a specific localization of disease, is an ongoing challenge. Data from mouse models of RA and investigations into the preclinical stages of disease also support the hypothesis that these alterations to the microbiota predate the onset of disease. In addition, several therapeutic options widely used for the treatment of RA are associated with alterations in intestinal microbiota, suggesting that modulation of intestinal microbiota and/or intestinal barrier function might be useful in preventing or treating RA.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/microbiologia , Articulações/patologia , Microbiota/imunologia , Mucosa/imunologia , Animais , Antirreumáticos/efeitos adversos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Disbiose/complicações , Disbiose/imunologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Articulações/imunologia , Masculino , Camundongos , Microbiota/efeitos dos fármacos , Mucosa/microbiologia , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Líquido Sinovial/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA