Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Immunity ; 56(5): 926-943.e7, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36948192

RESUMO

NOD-like receptors (NLRs) are pattern recognition receptors for diverse innate immune responses. Self-oligomerization after engagement with a ligand is a generally accepted model for the activation of each NLR. We report here that a catalyzer was required for NLR self-oligomerization. PELO, a well-known surveillance factor in translational quality control and/or ribosome rescue, interacted with all cytosolic NLRs and activated their ATPase activity. In the case of flagellin-initiated NLRC4 inflammasome activation, flagellin-bound NAIP5 recruited the first NLRC4 and then PELO was required for correctly assembling the rest of NLRC4s into the NLRC4 complex, one by one, by activating the NLRC4 ATPase activity. Stoichiometric and functional data revealed that PELO was not a structural constituent of the NLRC4 inflammasome but a powerful catalyzer for its assembly. The catalytic role of PELO in the activation of cytosolic NLRs provides insight into NLR activation and provides a direction for future studies of NLR family members.


Assuntos
Proteínas Reguladoras de Apoptose , Inflamassomos , Adenosina Trifosfatases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Flagelina/metabolismo , Inflamassomos/metabolismo , Proteína Inibidora de Apoptose Neuronal/química , Proteína Inibidora de Apoptose Neuronal/metabolismo , Proteínas NLR/metabolismo
2.
Immunity ; 51(6): 983-996.e6, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31836429

RESUMO

Excessive activation of the coagulation system leads to life-threatening disseminated intravascular coagulation (DIC). Here, we examined the mechanisms underlying the activation of coagulation by lipopolysaccharide (LPS), the major cell-wall component of Gram-negative bacteria. We found that caspase-11, a cytosolic LPS receptor, activated the coagulation cascade. Caspase-11 enhanced the activation of tissue factor (TF), an initiator of coagulation, through triggering the formation of gasdermin D (GSDMD) pores and subsequent phosphatidylserine exposure, in a manner independent of cell death. GSDMD pores mediated calcium influx, which induced phosphatidylserine exposure through transmembrane protein 16F, a calcium-dependent phospholipid scramblase. Deletion of Casp11, ablation of Gsdmd, or neutralization of phosphatidylserine or TF prevented LPS-induced DIC. In septic patients, plasma concentrations of interleukin (IL)-1α and IL-1ß, biomarkers of GSDMD activation, correlated with phosphatidylserine exposure in peripheral leukocytes and DIC scores. Our findings mechanistically link immune recognition of LPS to coagulation, with implications for the treatment of DIC.


Assuntos
Caspases Iniciadoras/metabolismo , Coagulação Intravascular Disseminada/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosfatidilserinas/metabolismo , Tromboplastina/metabolismo , Animais , Coagulação Sanguínea/fisiologia , Caspases Iniciadoras/genética , Linhagem Celular Tumoral , Endotoxemia/patologia , Ativação Enzimática , Células HT29 , Células HeLa , Humanos , Interleucina-1alfa/sangue , Interleucina-1beta/sangue , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Piroptose/fisiologia , Transdução de Sinais/fisiologia
3.
Nature ; 603(7899): 159-165, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197629

RESUMO

Metformin, the most prescribed antidiabetic medicine, has shown other benefits such as anti-ageing and anticancer effects1-4. For clinical doses of metformin, AMP-activated protein kinase (AMPK) has a major role in its mechanism of action4,5; however, the direct molecular target of metformin remains unknown. Here we show that clinically relevant concentrations of metformin inhibit the lysosomal proton pump v-ATPase, which is a central node for AMPK activation following glucose starvation6. We synthesize a photoactive metformin probe and identify PEN2, a subunit of γ-secretase7, as a binding partner of metformin with a dissociation constant at micromolar levels. Metformin-bound PEN2 forms a complex with ATP6AP1, a subunit of the v-ATPase8, which leads to the inhibition of v-ATPase and the activation of AMPK without effects on cellular AMP levels. Knockout of PEN2 or re-introduction of a PEN2 mutant that does not bind ATP6AP1 blunts AMPK activation. In vivo, liver-specific knockout of Pen2 abolishes metformin-mediated reduction of hepatic fat content, whereas intestine-specific knockout of Pen2 impairs its glucose-lowering effects. Furthermore, knockdown of pen-2 in Caenorhabditis elegans abrogates metformin-induced extension of lifespan. Together, these findings reveal that metformin binds PEN2 and initiates a signalling route that intersects, through ATP6AP1, the lysosomal glucose-sensing pathway for AMPK activation. This ensures that metformin exerts its therapeutic benefits in patients without substantial adverse effects.


Assuntos
Hipoglicemiantes , Metformina , ATPases Vacuolares Próton-Translocadoras , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina Trifosfatases/metabolismo , Secretases da Proteína Precursora do Amiloide , Animais , Caenorhabditis elegans/metabolismo , Diabetes Mellitus/tratamento farmacológico , Glucose/metabolismo , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Lisossomos/metabolismo , Proteínas de Membrana , Metformina/agonistas , Metformina/metabolismo , Metformina/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
Mol Cell ; 80(2): 296-310.e6, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979304

RESUMO

Necroptosis induction in vitro often requires caspase-8 (Casp8) inhibition by zVAD because pro-Casp8 cleaves RIP1 to disintegrate the necrosome. It has been unclear how the Casp8 blockade of necroptosis is eliminated naturally. Here, we show that pro-Casp8 within the necrosome can be inactivated by phosphorylation at Thr265 (pC8T265). pC8T265 occurs in vitro in various necroptotic cells and in the cecum of TNF-treated mice. p90 RSK is the kinase of pro-Casp8. It is activated by a mechanism that does not need ERK but PDK1, which is recruited to the RIP1-RIP3-MLKL-containing necrosome. Phosphorylation of pro-Casp8 at Thr265 can substitute for zVAD to permit necroptosis in vitro. pC8T265 mimic T265E knockin mice are embryonic lethal due to unconstrained necroptosis, and the pharmaceutical inhibition of RSK-mediated pC8T265 diminishes TNF-induced cecum damage and lethality in mice by halting necroptosis. Thus, phosphorylation of pro-Casp8 at Thr265 by RSK is an intrinsic mechanism for passing the Casp8 checkpoint of necroptosis.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Caspase 8/metabolismo , Necroptose , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Animais , Ceco/lesões , Ceco/patologia , Linhagem Celular , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Mutação/genética , Necroptose/efeitos dos fármacos , Especificidade de Órgãos , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
5.
Nature ; 580(7803): 386-390, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296174

RESUMO

The aetiology of inflammatory bowel disease (IBD) is a multifactorial interplay between heredity and environment1,2. Here we report that deficiency in SETDB1, a histone methyltransferase that mediates the trimethylation of histone H3 at lysine 9, participates in the pathogenesis of IBD. We found that levels of SETDB1 are decreased in patients with IBD, and that mice with reduced SETDB1 in intestinal stem cells developed spontaneous terminal ileitis and colitis. SETDB1 safeguards genome stability3, and the loss of SETDB1 in intestinal stem cells released repression of endogenous retroviruses (retrovirus-like elements with long repeats that, in humans, comprise approximately 8% of the genome). Excessive viral mimicry generated by motivated endogenous retroviruses triggered Z-DNA-binding protein 1 (ZBP1)-dependent necroptosis, which irreversibly disrupted homeostasis of the epithelial barrier and promoted bowel inflammation. Genome instability, reactive endogenous retroviruses, upregulation of ZBP1 and necroptosis were all seen in patients with IBD. Pharmaceutical inhibition of RIP3 showed a curative effect in SETDB1-deficient mice, which suggests that targeting necroptosis of intestinal stem cells may represent an approach for the treatment of severe IBD.


Assuntos
Instabilidade Genômica , Histona-Lisina N-Metiltransferase/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Necroptose , Células-Tronco/metabolismo , Animais , Histona-Lisina N-Metiltransferase/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/citologia
6.
Nature ; 575(7784): 618-621, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31776491

RESUMO

All stellar-mass black holes have hitherto been identified by X-rays emitted from gas that is accreting onto the black hole from a companion star. These systems are all binaries with a black-hole mass that is less than 30 times that of the Sun1-4. Theory predicts, however, that X-ray-emitting systems form a minority of the total population of star-black-hole binaries5,6. When the black hole is not accreting gas, it can be found through radial-velocity measurements of the motion of the companion star. Here we report radial-velocity measurements taken over two years of the Galactic B-type star, LB-1. We find that the motion of the B star and an accompanying Hα emission line require the presence of a dark companion with a mass of [Formula: see text] solar masses, which can only be a black hole. The long orbital period of 78.9 days shows that this is a wide binary system. Gravitational-wave experiments have detected black holes of similar mass, but the formation of such massive ones in a high-metallicity environment would be extremely challenging within current stellar evolution theories.

7.
J Am Chem Soc ; 146(28): 18899-18904, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38975975

RESUMO

In recent years, dysprosium macrocycle single-molecule magnets (SMMs) have received increasing attention due to their excellent air/thermal stability, strong magnetic anisotropy, and rigid molecular skeleton. However, they usually display fast zero-field quantum tunneling of the magnetization (QTM) rate, severely hindering their data storage applications. Herein, we report the design, synthesis, and characterization of an air-stable monodecker didysprosium macrocycle integrating strong single-ion anisotropy, near-perfect local crystal field (CF) symmetry, and efficient exchange bias. These indispensable features enable clear-cut elucidation of the crucial role of very weak antiferromagnetic coupling on magnetization dynamics, creating a prominent SMM with a large effective energy barrier (Ueff) of 670 cm-1, open hysteresis loops at zero field up to 14.9 K, and a record relaxation time of QTM (τQTM), 24281 s, for all known nonradical-bridged lanthanide SMMs.

8.
J Am Chem Soc ; 146(21): 14528-14538, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38742912

RESUMO

Composite oxides have been widely applied in the hydrogenation of CO/CO2 to methanol or as the component of bifunctional oxide-zeolite for the synthesis of hydrocarbon chemicals. However, it is still challenging to disentangle the stepwise formation mechanism of CH3OH at working conditions and selectively convert CO2 to hydrocarbon chemicals with narrow distribution. Here, we investigate the reaction network of the hydrogenation of CO2 to methanol over a series of spinel oxides (AB2O4), among which the Zn-based nanostructures offer superior performance in methanol synthesis. Through a series of (quasi) in situ spectroscopic characterizations, we evidence that the dissociation of H2 tends to follow a heterolytic pathway and that hydrogenation ability can be regulated by the combination of Zn with Ga or Al. The coordinatively unsaturated metal sites over ZnAl2Ox and ZnGa2Ox originating from oxygen vacancies (OVs) are evidenced to be responsible for the dissociative adsorption and activation of CO2. The evolution of the reaction intermediates, including both carbonaceous and hydrogen species at high temperatures and pressures over the spinel oxides, has been experimentally elaborated at the atomic level. With the integration of a series of zeolites or zeotypes, high selectivities of hydrocarbon chemicals with narrow distributions can be directly produced from CO2 and H2, offering a promising route for CO2 utilization.

9.
Small ; : e2402000, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752453

RESUMO

This work reports on the preparation of uniform vesicle-structural carbon spheres doped with heteroatoms of N, P, and S, with the pore sizes strictly controlled by the hard templates of monodisperse submicron SiO2 spheres. The uniformly doped vesicular carbon microspheres are obtained in three steps: Stöber hydrolysis for the SiO2; in situ polymerization for the immobilization; and alkaline etching after carbonization. The size of the vesicles can be easily adjusted by regulating the particle size of the submicron SiO2 spheres, which has a significant effect on its electromagnetic wave (EMW) absorption performance. Compared with microspheres with pore sizes of 180 and 480 nm, when the vesicle aperture is 327 nm, with only 5.5 wt.% filling load and 1.9 mm thickness, the material shows the best EMW absorption behavior with the effective absorption bandwidth (EAB) covers the entire Ku band (6.32 GHz) and the minimum reflection loss (RLmin) of -36.10 dB, suggesting the optimized pore size of the microspheres can significantly improve the overall impedance matching of the material and achieve broadband wave absorption. This work paves the way for the enhancement of EMW absorption properties of porous material by optimizing the pore size of uniform apertures while maintaining their composition.

10.
Small ; : e2402655, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949408

RESUMO

Solution Gated Graphene Field-Effect Transistors (SGGT) are eagerly anticipated as an amplification platform for fabricating advanced ultra-sensitive sensors, allowing significant modulation of the drain current with minimal gate voltage. However, few studies have focused on light-matter interplay gating control for SGGT. Herein, this challenge is addressed by creating an innovative photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) functionalized with enzyme cascade reactions (ECR) for Organophosphorus (OPs) detection. The ECR system, consisting of acetylcholinesterase (AChE) and CuBTC nanomimetic enzymes, selectively recognizes OPs and forms o-phenylenediamine (oPD) oligomers sediment on the PEC electrode, with layer thickness related to the OPs concentration, demonstrating time-integrated amplification. Under light stimulation, the additional photovoltage generated on the PEC gate electrode is influenced by the oPD oligomers sediment layer, creating a differentiated voltage distribution along the gate path. PEC-SGGT, inherently equipped with built-in amplification circuits, sensitively captures gate voltage changes and delivers output with an impressive thousandfold current gain. The seamless integration of these three amplification modes in this advanced sensor allows a good linear range and highly sensitive detection of OPs, with a detection limit as low as 0.05 pm. This work provides a proof-of-concept for the feasibility of light-assisted functionalized gate-controlled PEC-SGGT for small molecule detection.

11.
Cardiovasc Diabetol ; 23(1): 21, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195542

RESUMO

Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3ß, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1ß, IL-6, JAG2, KCNJ2, MALT1, ß-MHC, NF-κB, PCK1, PLCß1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Fatores de Ribosilação do ADP , Espessura Intima-Media Carotídea , Diacilglicerol O-Aciltransferase , MicroRNAs/genética , Pró-Proteína Convertase 9 , Proteína Smad7 , Aterosclerose/genética
12.
Nanotechnology ; 35(36)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861963

RESUMO

Optimizing the width of depletion region is a key consideration in designing high performance photovoltaic photodetectors, as the electron-hole pairs generated outside the depletion region cannot be effectively separated, leading to a negligible contribution to the overall photocurrent. However, currently reported photovoltaic mid-infrared photodetectors based on two-dimensional heterostructures usually adopt a single pn junction configuration, where the depletion region width is not maximally optimized. Here, we demonstrate the construction of a high performance broadband mid-infrared photodetector based on a MoS2/b-AsP/MoS2npn van der Waals heterostructure. The npn heterojunction can be equivalently represented as two parallel-stacked pn junctions, effectively increasing the thickness of the depletion region. Consequently, the npn device shows a high detectivity of 1.3 × 1010cmHz1/2W-1at the mid-infrared wavelength, which is significantly improved compared with its single pn junction counterpart. Moreover, it exhibits a fast response speed of 12 µs, and a broadband detection capability ranging from visible to mid-infrared wavelengths.

13.
J Immunol ; 208(4): 968-978, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063996

RESUMO

Influx of activated neutrophils into the lungs is the histopathologic hallmark of acute lung injury (ALI) after intestinal ischemia/reperfusion (I/R). Neutrophils can release DNA and granular proteins to form cytotoxic neutrophil extracellular traps (NETs), which promotes bystander tissue injury. However, whether NETs are responsible for the remote ALI after intestinal I/R and the mechanisms underlying the dissemination of harmful gut-derived mediators to the lungs are unknown. In the C57BL/6J mouse intestinal I/R model, DNase I-mediated degradation and protein arginine deiminase 4 (PAD4) inhibitor-mediated inhibition of NET treatments reduced NET formation, tissue inflammation, and pathological injury in the lung. High-mobility group protein B1 (HMGB1) blocking prevented NET formation and protected against tissue inflammation, as well as reduced cell apoptosis and improved survival rate. Moreover, recombinant human HMGB1 administration further drives NETs and concurrent tissue toxic injury, which in turn can be reversed by neutrophil deletion via anti-Ly6G Ab i.p. injection. Furthermore, global MyD88 deficiency regulated NET formation and alleviated the development of ALI induced by intestinal I/R. Thus, HMGB1 released from necroptotic enterocytes caused ALI after intestinal I/R by inducing NET formation. Targeting NETosis and the HMGB1 pathway might extend effective therapeutic strategies to minimize intestinal I/R-induced ALI.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Armadilhas Extracelulares/genética , Proteína HMGB1/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Apoptose/genética , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Proteína HMGB1/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Traumatismo por Reperfusão/patologia
14.
Neuroradiology ; 66(3): 443-455, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183426

RESUMO

BACKGROUND: Optimal lumbar puncture segment selection remains controversial. This study aims to analyze anatomical differences among L3-4, L4-5, and L5-S1 segments across age groups and provide quantitative evidence for optimized selection. METHODS: 80 cases of CT images were collected with patients aged 10-80 years old. Threedimensional models containing L3-S1 vertebrae, dural sac, and nerve roots were reconstructed. Computer simulation determined the optimal puncture angles for the L3-4, L4-5, and L5-S1 segments. The effective dural sac area (ALDS), traversing nerve root area (ATNR), and area of the lumbar inter-laminar space (ALILS) were measured. Puncture efficacy ratio (ALDS/ALILS) and nerve injury risk ratio (ATNR/ALILS) were calculated. Cases were divided into four groups: A (10-20 years), B (21-40 years), C (41-60 years), and D (61-80 years). Statistical analysis was performed using SPSS. RESULTS: 1) ALDS was similar among segments; 2) ATNR was greatest at L5-S1; 3) ALILS was greatest at L5-S1; 4) Puncture efficacy ratio was highest at L3-4 and lowest at L5-S1; 5) Nerve injury risk was highest at L5-S1. In group D, L5-S1 ALDS was larger than L3-4 and L4-5. ALDS decreased after age 40. Age variations were minimal across parameters. CONCLUSION: The comprehensive analysis demonstrated L3-4 as the optimal first-choice segment for ages 10-60 years, conferring maximal efficacy and safety. L5-S1 can serve as an alternative option for ages 61-80 years when upper interspaces narrow. This study provides quantitative imaging evidence supporting age-specific, optimized lumbar puncture segment selection.


Assuntos
Vértebras Lombares , Punção Espinal , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Simulação por Computador , Vértebras Lombares/diagnóstico por imagem , Região Lombossacral , Tomografia Computadorizada por Raios X
15.
Compr Rev Food Sci Food Saf ; 23(1): e13276, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284605

RESUMO

Soy protein gel can be developed into a variety of products, ranging from traditional food (e.g., tofu) to newly developed food (e.g., soy yogurt and meat analog). So far, efforts are still needed to be made on modifying the gel properties of soy protein for improving its sensory properties as animal protein-based food substitutes. Furthermore, there is always a need to regulate its gel properties for designing novel and tailored products of soy protein gels due to the fast-growing plant protein-based product market. This review gave an emphasis on the latest modification strategies and applications of gel properties of soy protein. The modifying methods of soy protein gel properties were reviewed from an aspect of composition or processing. Compositional modification included changing protein composition and gelling conditions and using additives, whereas processing strategies can be achieved through physical, chemical, and enzymatic treatments. Several compositional modification and processing strategies have been both proven to alter the gel properties of soy protein effectively. So far, soy protein gel has been applied in the field of food and biomedicine. In the future, more mechanistic studies on the modification methods are still needed to facilitate the full application of soy protein gel.


Assuntos
Alimentos de Soja , Proteínas de Soja , Animais , Proteínas de Soja/química , Géis/química , Proteínas de Plantas
16.
Chin J Traumatol ; 27(2): 63-70, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040590

RESUMO

Sepsis is a potentially fatal condition characterized by the failure of one or more organs due to a disordered host response to infection. The development of sepsis is closely linked to immune dysfunction. As a result, immunotherapy has gained traction as a promising approach to sepsis treatment, as it holds the potential to reverse immunosuppression and restore immune balance, thereby improving the prognosis of septic patients. However, due to the highly heterogeneous nature of sepsis, it is crucial to carefully select the appropriate patient population for immunotherapy. This review summarizes the current and evolved treatments for sepsis-induced immunosuppression to enhance clinicians' understanding and practical application of immunotherapy in the management of sepsis.


Assuntos
Terapia de Imunossupressão , Sepse , Humanos , Imunoterapia , Sepse/tratamento farmacológico , Tolerância Imunológica
17.
Gastroenterology ; 162(4): 1183-1196, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968454

RESUMO

BACKGROUND & AIMS: N6-methyladenosine (m6A) governs the fate of RNAs through m6A readers. Colorectal cancer (CRC) exhibits aberrant m6A modifications and expression of m6A regulators. However, how m6A readers interpret oncogenic m6A methylome to promote malignant transformation remains to be illustrated. METHODS: YTH N6-methyladenosine RNA binding protein 1 (Ythdf1) knockout mouse was generated to determine the effect of Ythdf1 in CRC tumorigenesis in vivo. Multiomic analysis of RNA-sequencing, m6A methylated RNA immunoprecipitation sequencing, YTHDF1 RNA immunoprecipitation sequencing, and proteomics were performed to unravel targets of YTHDF1 in CRC. The therapeutic potential of targeting YTHDF1-m6A-Rho/Rac guanine nucleotide exchange factor 2 (ARHGEF2) was evaluated using small interfering RNA (siRNA) encapsulated by lipid nanoparticles (LNP). RESULTS: DNA copy number gain of YTHDF1 is a frequent event in CRC and contributes to its overexpression. High expression of YTHDF1 is significantly associated with metastatic gene signature in patient tumors. Ythdf1 knockout in mice dampened tumor growth in an inflammatory CRC model. YTHDF1 promotes cell growth in CRC cell lines and primary organoids and lung and liver metastasis in vivo. Integrative multiomics analysis identified RhoA activator ARHGEF2 as a key downstream target of YTHDF1. YTHDF1 binds to m6A sites of ARHGEF2 messenger RNA, resulting in enhanced translation of ARHGEF2. Ectopic expression of ARHGEF2 restored impaired RhoA signaling, cell growth, and metastatic ability both in vitro and in vivo caused by YTHDF1 loss, verifying that ARHGEF2 is a key target of YTHDF1. Finally, ARHGEF2 siRNA delivered by LNP significantly suppressed tumor growth and metastasis in vivo. CONCLUSIONS: We identify a novel oncogenic epitranscriptome axis of YTHDF1-m6A-ARHGEF2, which regulates CRC tumorigenesis and metastasis. siRNA-delivering LNP drug validated the therapeutic potential of targeting this axis in CRC.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Carcinogênese/genética , Neoplasias Colorretais/patologia , Humanos , Lipossomos , Camundongos , Nanopartículas , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
18.
Crit Care Med ; 51(10): 1318-1327, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272947

RESUMO

OBJECTIVES: To determine the effectiveness and safety of ciprofol for sedating patients in ICUs who required mechanical ventilation (MV). DESIGN: A multicenter, single-blind, randomized, noninferiority trial. SETTING: Twenty-one centers across China from December 2020 to June 2021. PATIENTS: A total of 135 ICU patients 18 to 80 years old with endotracheal intubation and undergoing MV, who were expected to require sedation for 6-24 hours. INTERVENTIONS: One hundred thirty-five ICU patients were randomly allocated into ciprofol ( n = 90) and propofol ( n = 45) groups in a 2:1 ratio. Ciprofol or propofol were IV infused at loading doses of 0.1 mg/kg or 0.5 mg/kg, respectively, over 4 minutes ± 30 seconds depending on the physical condition of each patient. Ciprofol or propofol were then immediately administered at an initial maintenance dose of 0.3 mg/kg/hr or 1.5 mg/kg/hr, to achieve the target sedation range of Richmond Agitation-Sedation Scale (+1 to -2). Besides, continuous IV remifentanil analgesia was administered (loading dose: 0.5-1 µg/kg, maintenance dose: 0.02-0.15 µg/kg/min). MEASUREMENTS AND MAIN RESULTS: Of the 135 patients enrolled, 129 completed the study. The primary endpoint-sedation success rates of ciprofol and propofol groups were 97.7% versus 97.8% in the full analysis set (FAS) and were both 100% in per-protocol set (PPS). The noninferiority margin was set as 8% and confirmed with a lower limit of two-sided 95% CI for the inter-group difference of -5.98% and -4.32% in the FAS and PPS groups. Patients who received ciprofol had a longer recovery time ( p = 0.003), but there were no differences in the remaining secondary endpoints (all p > 0.05). The occurrence rates of treatment-emergent adverse events (TEAEs) or drug-related TEAEs were not significantly different between the groups (all p > 0.05). CONCLUSIONS: Ciprofol was well tolerated, with a noninferior sedation profile to propofol in Chinese ICU patients undergoing MV for a period of 6-24 hours.


Assuntos
Propofol , Respiração Artificial , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Respiração Artificial/métodos , Método Simples-Cego , Dor/tratamento farmacológico , Unidades de Terapia Intensiva , Hipnóticos e Sedativos/uso terapêutico
19.
Chemistry ; 29(24): e202203494, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36645730

RESUMO

Using a novel tricompartmental hydrazone ligand, a set of trinuclear Dy3 complexes has been isolated and structurally characterized. Complexes Dy3 ⋅ Cl, Dy3 ⋅ Br, and Dy3 ⋅ ClO4 feature a similar overall topology but different anions (Cl- , Br- , or ClO4 - ) in combination with exogenous OH- and solvent co-ligands, which is found to translate into very different magnetic properties. Complex Dy3 ⋅ Cl shows a double relaxation process with fast quantum tunneling of the magnetization, probably related to the structural disorder of µ2 -OH- and µ2 -Cl- co-ligands. Relaxation of the magnetization is slowed down for Dy3 ⋅ Br and Dy3 ⋅ ClO4 , which do not show any structural disorder. In particular, fast quantum tunneling is suppressed in case of Dy3 ⋅ ClO4 , resulting in an energy barrier of 341 K and magnetic hysteresis up to 3.5 K; this makes Dy3 ⋅ ClO4 one of the most robust air-stable trinuclear SMMs. Magneto-structural relationships of the three complexes are analyzed and rationalized with the help of CASSCF/RASSI-SO calculations.

20.
Analyst ; 148(20): 5210-5220, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37724336

RESUMO

In this study, a simple and portable electrochemical sensor based on laser-induced graphene (LIG) has been developed to systematically investigate the feasibility of LIG as an electrode to detect organophosphorus pesticides (OPs). It proves that the LIG-based electrode has a relatively high electrochemically active surface area (ECSA) and heterogeneous electron transfer (HET) of 0.100 cm2 and 0.000825 cm s-1, respectively. In addition, zirconium dioxide nanoparticles (ZrO2 NPs) have been modified on the electrode with three different binders, ß-cyclodextrin (ß-CD), chitosan (CS) and Nafion, to improve the adsorption capacity of the electrode toward OPs, and the effect of the binders on the performance of the as-fabricated sensor has been investigated in detail. The results show that ß-CD increases not only the electrochemically active surface area of the electrode but also the redox peak current of methyl parathion (MP). To evaluate the sensitivity of the sensor, differential pulse voltammetry (DPV) curves have been tested in solutions containing different concentrations of MP using ZrO2-ß-CD/LIG as an electrode, which shows a detection range of 5-200 ng ml-1 and a detection limit of 0.89 ng ml-1. In summary, the LIG-based sensor has a low detection limit, high sensitivity and good interference resistance, and thus has tremendous potential for the detection of pesticides in the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA